
Scalable Adaptive Stochastic Optimization Using
Random Projections

Gabriel Krummenacher♦∗
gabriel.krummenacher@inf.ethz.ch

Brian McWilliams♥∗
brian@disneyresearch.com

Yannic Kilcher♦
yannic.kilcher@inf.ethz.ch

Joachim M. Buhmann♦

jbuhmann@inf.ethz.ch

Nicolai Meinshausen♣
meinshausen@stat.math.ethz.ch

♦Institute for Machine Learning, Department of Computer Science, ETH Zürich, Switzerland
♣Seminar for Statistics, Department of Mathematics, ETH Zürich, Switzerland

♥Disney Research, Zürich, Switzerland

Abstract

Adaptive stochastic gradient methods such as ADAGRAD have gained popularity in
particular for training deep neural networks. The most commonly used and studied
variant maintains a diagonal matrix approximation to second order information
by accumulating past gradients which are used to tune the step size adaptively. In
certain situations the full-matrix variant of ADAGRAD is expected to attain better
performance, however in high dimensions it is computationally impractical. We
present ADA-LR and RADAGRAD two computationally efficient approximations
to full-matrix ADAGRAD based on randomized dimensionality reduction. They are
able to capture dependencies between features and achieve similar performance to
full-matrix ADAGRAD but at a much smaller computational cost. We show that the
regret of ADA-LR is close to the regret of full-matrix ADAGRAD which can have
an up-to exponentially smaller dependence on the dimension than the diagonal
variant. Empirically, we show that ADA-LR and RADAGRAD perform similarly to
full-matrix ADAGRAD. On the task of training convolutional neural networks as
well as recurrent neural networks, RADAGRAD achieves faster convergence than
diagonal ADAGRAD.

1 Introduction

Recently, so-called adaptive stochastic optimization algorithms have gained popularity for large-scale
convex and non-convex optimization problems. Among these, ADAGRAD [9] and its variants [21]
have received particular attention and have proven among the most successful algorithms for training
deep networks. Although these problems are inherently highly non-convex, recent work has begun to
explain the success of such algorithms [3].

ADAGRAD adaptively sets the learning rate for each dimension by means of a time-varying proximal
regularizer. The most commonly studied and utilised version considers only a diagonal matrix
proximal term. As such it incurs almost no additional computational cost over standard stochastic

∗Authors contributed equally.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



gradient descent (SGD). However, when the data has low effective rank the regret of ADAGRAD may
have a much worse dependence on the dimensionality of the problem than its full-matrix variant
(which we refer to as ADA-FULL). Such settings are common in high dimensional data where there
are many correlations between features and can also be observed in the convolutional layers of neural
networks. The computational cost of ADA-FULL is substantially higher than that of ADAGRAD– it
requires computing the inverse square root of the matrix of gradient outer products to evaluate the
proximal term which grows with the cube of the dimension. As such it is rarely used in practise.

In this work we propose two methods that approximate the proximal term used in ADA-FULL
drastically reducing computational and storage complexity with little adverse affect on optimization
performance. First, in Section 3.1 we develop ADA-LR, a simple approximation using random
projections. This procedure reduces the computational complexity of ADA-FULL by a factor of
p but retains similar theoretical guarantees. In Section 3.2 we systematically profile the most
computationally expensive parts of ADA-LR and introduce further randomized approximations
resulting in a truly scalable algorithm, RADAGRAD. In Section 3.3 we outline a simple modification
to RADAGRAD– reducing the variance of the stochastic gradients – which greatly improves practical
performance. Finally we perform an extensive comparison between the performance of RADAGRAD
with several widely used optimization algorithms on a variety of deep learning tasks. For image
recognition with convolutional networks and language modeling with recurrent neural networks we
find that RADAGRAD and in particular its variance-reduced variant achieves faster convergence.

1.1 Related work

Motivated by the problem of training deep neural networks, very recently many new adaptive
optimization methods have been proposed. Most computationally efficient among these are first order
methods similar in spirit to ADAGRAD, which suggest alternative normalization factors [21, 28, 6].
Several authors propose efficient stochastic variants of classical second order methods such as L-
BFGS [5, 20]. Efficient algorithms exist to update the inverse of the Hessian approximation by
applying the matrix-inversion lemma or directly updating the Hessian-vector product using the
“double-loop” algorithm but these are not applicable to ADAGRAD style algorithms. In the convex
setting these methods can show great theoretical and practical benefit over first order methods but
have yet to be extensively applied to training deep networks.

On a different note, the growing zoo of variance reduced SGD algorithms [19, 7, 18] has shown
vastly superior performance to ADAGRAD-style methods for standard empirical risk minimization
and convex optimization. Recent work has aimed to move these methods into the non-convex setting
[1]. Notably, [22] combine variance reduction with second order methods.

Most similar to RADAGRAD are those which propose factorized approximations of second order
information. Several methods focus on the natural gradient method [2] which leverages second
order information through the Fisher information matrix. [14] approximate the inverse Fisher matrix
using a sparse graphical model. [8] use low-rank approximations whereas [26] propose an efficient
Kronecker product based factorization. Concurrently with this work, [12] propose a randomized
preconditioner for SGD. However, their approach requires access to all of the data at once in order to
compute the preconditioning matrix which is impractical for training deep networks. [23] propose a
theoretically motivated algorithm similar to ADA-LR and a faster alternative based on Oja’s rule to
update the SVD.

Fast random projections. Random projections are low-dimensional embeddings Π : Rp → Rτ
which preserve – up to a small distortion – the geometry of a subspace of vectors. We concen-
trate on the class of structured random projections, among which the Subsampled Randomized
Fourier Transform (SRFT) has particularly attractive properties [15]. The SRFT consists of a pre-
conditioning step after which τ columns of the new matrix are subsampled uniformly at random as
Π =

√
p/τSΘD with the definitions: (i) S ∈ Rτ×p is a subsampling matrix. (ii) D ∈ Rp×p is a

diagonal matrix whose entries are drawn independently from {−1, 1}. (iii) Θ ∈ Rp×p is a unitary
discrete Fourier tranansform (DFT) matrix. This formulations allows very fast implementations using
the fast Fourier transform (FFT), for example using the popular FFTW package2. Applying the FFT
to a p−dimensional vector can be achieved in O (p log τ) time. Similar structured random projections

2http://www.fftw.org/

2

http://www.fftw.org/


have gained popularity as a way to speed up [24] and robustify [27] large-scale linear regression and
for distributed estimation [17, 16].

1.2 Problem setting

The problem considered by [9] is online stochastic optimization where the goal is, at each step,
to predict a point βt ∈ Rp which achieves low regret with respect to a fixed optimal predictor,
βopt, for a sequence of (convex) functions Ft(β). After T rounds, the regret can be defined as
R(T ) =

∑T
t=1 Ft(βt)−

∑T
t=1 Ft(β

opt).

Initially, we will consider functions Ft of the form Ft(β) := ft(β) + ϕ(β) where ft and ϕ are
convex loss and regularization functions respectively. Throughout, the vector gt ∈ ∇ft(βt) refers to
a particular subgradient of the loss function. Standard first order methods update βt at each step by
moving in the opposite direction of gt according to a step-size parameter, η. The ADAGRAD family
of algorithms [9] instead use an adaptive learning rate which can be different for each feature. This is
controlled using a time-varying proximal term which we briefly review. Defining Gt =

∑t
i=1 gig

>
i

and Ht = δIp+(Gt−1+gtg
>
t )

1/2, the ADA-FULL proximal term is given by ψt(β) = 1
2 〈β,Htβ〉.

Clearly when p is large, constructing G and finding its root and inverse at each iteration is impractical.
In practice, rather than the full outer product matrix, ADAGRAD uses a proximal function consisting
of the diagonal of Gt, ψt(β) = 1

2

〈
β,
(
δIp + diag(Gt)

1/2
)
β
〉
. Although the diagonal proximal

term is computationally cheaper, it is unable to capture dependencies between coordinates in the
gradient terms. Despite this, ADAGRAD has been found to perform very well empirically. One reason
for this is modern high-dimensional datasets are typically also very sparse. Under these conditions,
coordinates in the gradient are approximately independent.

2 Stochastic optimization in high dimensions

ADAGRAD has attractive theoretical and empirical properties and adds essentially no overhead above
a standard first order method such as SGD. It begs the question, what we might hope to gain by
introducing additional computational complexity. In order to motivate our contribution, we first
present an analogue of the discussion in [10] focussing on when data is high-dimensional and dense.
We argue that if the data has low-rank (rather than sparse) structure ADA-FULL can effectively adapt
to the intrinsic dimensionality. We also show in Section 3.1 that ADA-LR has the same property.

First, we review the theoretical properties of ADAGRAD algorithms, borrowing the g1:T,j notation[9].

Proposition 1. ADAGRAD and ADA-FULL achieve the following regret (Corollaries 6 & 11 from
[9]) respectively:

RD(T ) ≤ 2‖βopt‖∞
p∑
j=1

‖g1:T,j‖+ δ‖βopt‖1 , RF (T ) ≤ 2‖βopt‖ · tr(G1/2
T ) + δ‖βopt‖. (1)

The major difference betweenRD(T ) andRF (T ) is the inclusion of the final full-matrix and diagonal
proximal term, respectively. Under a sparse data generating distribution ADAGRAD achieves an
up-to exponential improvement over SGD which is optimal in a minimax sense [10]. While data
sparsity is often observed in practise in high-dimensional datasets (particularly web/text data) many
other problems are dense. Furthermore, in practise applying ADAGRAD to dense data results in a
learning rate which tends to decay too rapidly. It is therefore natural to ask how dense data affects the
performance of ADA-FULL.

For illustration, consider when the data points xi are sampled i.i.d. from a Gaussian distribution
PX = N (0,Σ). The resulting variable will clearly be dense. A common feature of high dimensional
data is low effective rank defined for a matrix Σ as r(Σ) = tr(Σ)/‖Σ‖ ≤ rank(Σ) ≤ p. Low
effective rank implies that r � p and therefore the eigenvalues of the covariance matrix decay
quickly. We will consider distributions parameterised by covariance matrices Σ with eigenvalues
λj(Σ) = λ0j

−α for j = 1, . . . , p.

Functions of the form Ft(β) = Ft(β
>xt) have gradients ‖gt‖ ≤ M ‖xt‖. For example, the least

squares loss Ft(β>xt) = 1
2 (yt − β>xt)

2 has gradient gt = xt(yt − x>t βt) = xtεt, such that

3



‖εt‖ ≤M . Let us consider the effect of distributions parametrised by Σ on the proximal terms of
full, and diagonal ADAGRAD. Plugging X into the proximal terms of (1) and taking expectations
with respect to PX we obtain for ADAGRAD and ADA-FULL respectively:

E
p∑
j=1

‖g1:T,j‖ ≤
p∑
j=1

√√√√M2E
T∑
t=1

x2t,j ≤ pM
√
T , E tr((

T∑
t=1

gtg
>
t )

1/2) ≤M
√
Tλ0

p∑
j=1

j−α/2,

(2)

where the first inequality is from Jensen and the second is from noticing the sum of T squared
Gaussian random variables is a χ2 random variable. We can consider the effect of fast-decaying
spectrum: for α ≥ 2,

∑p
j=1 j

−α/2 = O (log p) and for α ∈ (1, 2),
∑p
j=1 j

−α/2 = O
(
p1−α/2

)
.

When the data (and thus the gradients) are dense, yet have low effective rank, ADA-FULL is able
to adapt to this structure. On the contrary, although ADAGRAD is computationally practical, in the
worst case it may have exponentially worse dependence on the data dimension (p compared with
log p). In fact, the discrepancy between the regret of ADA-FULL and that of ADAGRAD is analogous
to the discrepancy between ADAGRAD and SGD for sparse data.

Algorithm 1 ADA-LR

Input: η > 0, δ ≥ 0, τ

1: for t = 1 . . . T do
2: Receive gt = ∇ft(βt).
3: Gt = Gt−1 + gtg

>
t

4: Project: G̃t = GtΠ
5: QR = G̃t {QR-decomposition}
6: B = Q>Gt

7: U,Σ,V = B {SVD}
8:
9:

10: βt+1 = βt − ηV(Σ1/2 + δI)−1V>gt
11: end for
Output: βT

Algorithm 2 RADAGRAD

Input: η > 0, δ ≥ 0, τ

1: for t = 1 . . . T do
2: Receive gt = ∇ft(βt).
3: Project: g̃t = Πgt
4: G̃t = G̃t−1 + gtg̃

>
t

5: Qt,Rt← qr_update(Qt−1,Rt−1,gt, g̃t)
6: B = G̃>t Qt

7: U,Σ,W = B {SVD}
8: V = WQ>

9: γt = η(gt −VV>gt)

10: βt+1 = βt−ηV(Σ1/2+δI)−1V>gt−γt
11: end for
Output: βT

3 Approximating ADA-FULL using random projections

It is clear that in certain regimes, ADA-FULL provides stark optimization advantages over ADAGRAD
in terms of the dependence on p. However, ADA-FULL requires maintaining a p× p matrix, G and
computing its square root and inverse. Therefore, computationally the dependence of ADA-FULL on
p scales with the cube which is impractical in high dimensions.

A naïve approach would be to simply reduce the dimensionality of the gradient vector, g̃t ∈ Rτ =
Πgt. ADA-FULL is now directly applicable in this low-dimensional space, returning a solution vector
β̃t ∈ Rτ at each iteration. However, for many problems, the original coordinates may have some
intrinsic meaning or in the case of deep networks, may be parameters in a model. In which case it
is important to return a solution in the original space. Unfortunately in general it is not possible to
recover such a solution from β̃t [30].

Instead, we consider a different approach to maintaining and updating an approximation of the
ADAGRAD matrix while retaining the original dimensionality of the parameter updates β and
gradients g.

3.1 Randomized low-rank approximation

As a first approach we approximate the inverse square root of Gt using a fast randomized singular
value decomposition (SVD) [15]. We proceed in two stages: First we compute an approximate basis

4



Q for the range of Gt. Then we use Q to compute an approximate SVD of Gt by forming the
smaller dimensional matrix B = Q>Gt and then compute the low-rank SVD UΣV> = B. This is
faster than computing the SVD of Gt directly if Q has few columns.

An approximate basis Q can be computed efficiently by forming the matrix G̃t = GtΠ by means
of a structured random projection and then constructing an orthonormal basis for the range of G̃t

by QR-decomposition. The randomized SVD allows us to quickly compute the square root and
pseudo-inverse of the proximal term Ht by setting H̃−1t = V(Σ1/2 + δI)−1V>. We call this
approximation ADA-LR and describe the steps in full in Algorithm 1.

In practice, using a structured random projection such as the SRFT leads to an approximation of the
original matrix, Gt of the following form

∥∥Gt −QQ>Gt

∥∥ ≤ ε, with high probability [15] where
ε depends on τ , the number of columns of Q; p and the τ th singular value of Gt. Briefly, if the
singular values of Gt decay quickly and τ is chosen appropriately, ε will be small (this is stated more
formally in Proposition 2). We leverage this result to derive the following regret bound for ADA-LR
(see C.1 for proof).

Proposition 2. Let σk+1 be the kth largest singular value of Gt. Setting the projection dimension as

4
(√

k +
√
8 log(kn)

)2
≤ τ ≤ p and defining ε =

√
1 + 7p/τ · σk+1. With failure probability at

most O
(
k−1

)
ADA-LR achieves regret RLR(T ) ≤ 2‖βopt‖tr(G1/2

T ) + (2τ
√
ε+ δ)‖βopt‖ .

Due to the randomized approximation we incur an additional 2τ
√
ε‖βopt‖ compared with the regret

of ADA-FULL (eq. 1). So, under the earlier stated assumption of fast decaying eigenvalues we can
use an identical argument as in eq. (2) to similarly obtain a dimension dependence of O (log p+ τ).

Approximating the inverse square root decreases the complexity of each iteration from O
(
p3
)

to O
(
τp2
)
. We summarize the cost of each step in Algorithm 1 and contrast it with the cost of

ADA-FULL in Table A.1 in Section A. Even though ADA-LR removes one factor of p form the runtime
of ADA-FULL it still needs to store the large matrix Gt. This prevents ADA-LR from being a truly
practical algorithm. In the following section we propose a second algorithm which directly stores a
low dimensional approximation to Gt that can be updated cheaply. This allows for an improvement
in runtime to O

(
τ2p
)
.

3.2 RADAGRAD: A faster approximation

From Table A.1, the expensive steps in Algorithm 1 are the update of Gt (line 3), the random
projection (line 4) and the projection onto the approximate range of Gt (line 6). In the following we
propose RADAGRAD, an algorithm that reduces the complexity to O

(
τ2p
)

by only approximately
solving some of the expensive steps in ADA-LR while maintaining similar performance in practice.

To compute the approximate range Q, we do not need to store the full matrix Gt. Instead we only
require the low dimensional matrix G̃t = GtΠ. This matrix can be computed iteratively by setting
G̃t ∈ Rp×τ = G̃t−1 + gt(Πgt)

>. This directly reduces the cost of the random projection to
O (p log τ) since we only project the vector gt instead of the matrix Gt, it also makes the update of
G̃t faster and saves storage.

We then project G̃t on the approximate range of Gt and use the SVD to compute the inverse square
root. Since Gt is symmetric its row and column space are identical so little information is lost by
projecting G̃t instead of Gt on the approximate range of Gt.3 The advantage is that we can now
compute the SVD in O

(
τ3
)

and the matrix-matrix product on line 6 in O
(
τ2p
)
. See Algorithm 2

for the full procedure.

The most expensive steps are now the QR decomposition and the matrix multiplications in steps 6
and 8 (see Algorithm 2 and Table A.1). Since at each iteration we only update the matrix G̃t with
the rank-one matrix gtg̃

>
t we can use faster rank-1 QR-updates [11] instead of recomputing the

full QR decomposition. To speed up the matrix-matrix product G̃>t Q for very large problems (e.g.
backpropagation in convolutional neural networks), a multithreaded BLAS implementation can be
used.

3This idea is similar to bilinear random projections [13].

5



3.3 Practical algorithms

Here we outline several simple modifications to the RADAGRAD algorithm to improve practical
performance.

Corrected update. The random projection step only retains at most τ eigenvalues of Gt. If the
assumption of low effective rank does not hold, important information from the p − τ smallest
eigenvalues might be discarded. RADAGRAD therefore makes use of the corrected update

βt+1 = βt − ηV(Σ1/2 + δI)−1V>gt − γt, where γt = η(I−VV>)gt.

γt is the projection of the current gradient onto the space orthogonal to the one captured by the
random projection of Gt. This ensures that important variation in the gradient which is poorly
approximated by the random projection is not completely lost. Consequently, if the data has rank
less than τ , ‖γ‖ ≈ 0. This correction only requires quantities which have already been computed but
greatly improves practical performance.

Variance reduction. Variance reduction methods based on SVRG [19] obtain lower-variance
gradient estimates by means of computing a “pivot point” over larger batches of data. Recent work
has shown improved theoretical and empirical convergence in non-convex problems [1] in particular
in combination with ADAGRAD.

We modify RADAGRAD to use the variance reduction scheme of SVRG. The full procedure is given
in Algorithm 3 in Section B. The majority of the algorithm is as RADAGRAD except for the outer
loop which computes the pivot point, µ every epoch which is used to reduce the variance of the
stochastic gradient (line 4). The important additional parameter is m, the update frequency for µ. As
in [1] we set this to m = 5n. Practically, as is standard practise we initialise RADA-VR by running
ADAGRAD for several epochs.

We study the empirical behaviour of ADA-LR, RADAGRAD and its variance reduced variant in the
next section.

4 Experiments

4.1 Low effective rank data

0 500 1000 1500 2000 2500 3000 3500 4000

Iteration

10−2

10−1

100

L
os

s

ADA-FULL

ADA-LR

RADAGRAD

ADAGRAD

(a) Logistic Loss

0 10 20 30 40 50 60

Principal component

10−3

10−2

10−1

100

N
or

m
al

is
ed

ei
ge

nv
al

ue
s

ADA-FULL

ADA-LR

RADAGRAD

ADAGRAD

(b) Spectrum

Figure 1: Comparison of: (a) loss and (b) the largest eigenvalues
(normalised by their sum) of the proximal term on simulated data.

We compare the performance
of our proposed algorithms
against both the diagonal and
full-matrix ADAGRAD variants
in the idealised setting where
the data is dense but has low
effective rank. We gener-
ate binary classification data
with n = 1000 and p =
125. The data is sampled i.i.d.
from a Gaussian distribution
N (µc,Σ) where Σ has with
rapidly decaying eigenvalues
λj(Σ) = λ0j

−α with α = 1.3, λ0 = 30. Each of the two classes has a different mean, µc.

For each algorithm learning rates are tuned using cross validation. The results for 5 epochs are
averaged over 5 runs with different permutations of the data set and instantiations of the random
projection for ADA-LR and RADAGRAD. For the random projection we use an oversampling factor
so Π ∈ R(10+τ)×p to ensure accurate recovery of the top τ singular values and then set the values of
λ[τ :p] to zero [15].

Figure 1a shows the mean loss on the training set. The performance of ADA-LR and RADAGRAD
match that of ADA-FULL. On the other hand, ADAGRAD converges to the optimum much more
slowly. Figure 1b shows the largest eigenvalues (normalized by their sum) of the proximal matrix
for each method at the end of training. The spectrum of Gt decays rapidly which is matched by

6



0 5000 10000 15000 20000 25000 30000 35000 40000

Iteration

10−3

10−2

10−1

T
ra

in
in

g
L

os
s

RADAGRAD

RADA-VR

ADAGRAD

ADAGRAD+SVRG

0 5000 10000 15000 20000 25000 30000 35000 40000

Iteration

0.95

0.96

0.97

0.98

0.99

Te
st

A
cc

ur
ac

y

RADAGRAD

RADA-VR

ADAGRAD

ADAGRAD+SVRG

(a) MNIST

0 5000 10000 15000 20000 25000 30000 35000

Iteration

100

T
ra

in
in

g
L

os
s

RADAGRAD

RADA-VR

ADAGRAD

ADAGRAD+SVRG

0 5000 10000 15000 20000 25000 30000 35000

Iteration

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

A
cc

ur
ac

y

RADAGRAD

RADA-VR

ADAGRAD

ADAGRAD+SVRG

(b) CIFAR

0 10000 20000 30000 40000 50000

Iteration

10−1

100

T
ra

in
in

g
L

os
s

RADAGRAD

RADA-VR

ADAGRAD

ADAGRAD+SVRG

0 10000 20000 30000 40000 50000

Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

A
cc

ur
ac

y

RADAGRAD

RADA-VR

ADAGRAD

ADAGRAD+SVRG

(c) SVHN

Figure 2: Comparison of training loss (top row) and test accuracy (bottom row) on (a) MNIST, (b)
CIFAR and (c) SVHN.

the randomized approximation. This illustrates the dependencies between the coordinates in the
gradients and suggests Gt can be well approximated by a low-dimensional matrix which considers
these dependencies. On the other hand the spectrum of ADAGRAD (equivalent to the diagonal of G)
decays much more slowly. The learning rate, η chosen by RADAGRAD and ADA-FULL are roughly
one order of magnitude higher than for ADAGRAD.

4.2 Non-convex optimization in neural networks

Here we compare RADAGRAD and RADA-VR against ADAGRAD and the combination of
ADAGRAD+SVRG on the task of optimizing several different neural network architectures.

Convolutional Neural Networks. We used modified variants of standard convolutional network
architectures for image classification on the MNIST, CIFAR-10 and SVHN datasets. These consist of
three 5× 5 convolutional layers generating 32 channels with ReLU non-linearities, each followed by
2× 2 max-pooling. The final layer was a dense softmax layer and the objevtive was to minimize the
categorical cross entropy.

We used a batch size of 8 and trained the networks without momentum or weight decay, in order
to eliminate confounding factors. Instead, we used dropout regularization (p = 0.5) in the dense
layers during training. Step sizes were determined by coarsely searching a log scale of possible
values and evaluating performance on a validation set. We found RADAGRAD to have a higher
impact with convolutional layers than with dense layers, due to the higher correlations between
weights. Therefore, for computational reasons, RADAGRAD was only applied on the convolutional
layers. The last dense classification layer was trained with ADAGRAD. In this setting ADA-FULL is
computationally infeasible. The number of parameters in the convolutional layers is between 50-80k.
Simply storing the full G matrix using double precision would require more memory than is available
on top-of-the-line GPUs.

The results of our experiments can be seen in Figure 2, where we show the objective value during
training and the test accuracy. We find that both RADAGRAD variants consistently outperform
both ADAGRAD and the combination of ADAGRAD+SVRG on these tasks. In particular combining
RADAGRAD with variance reduction results in the largest improvement for training although both
RADAGRAD variants quickly converge to very similar values for test accuracy.

For all models, the learning rate selected by RADAGRAD is approximately an order of magnitude
larger than the one selected by ADAGRAD. This suggests that RADAGRAD can make more aggres-
sive steps than ADAGRAD, which results in the relative success of RADAGRAD over ADAGRAD,
especially at the beginning of the experiments.

7



We observed that RADAGRAD performed 5-10× slower than ADAGRAD per iteration. This can be
attributed to the lack of GPU-optimized SVD and QR routines. These numbers are comparable with
other similar recently proposed techniques [23]. However, due to the faster convergence we found
that the overall optimization time of RADAGRAD was lower than for ADAGRAD.

0 20000 40000 60000 80000 100000

Iteration

10−3

10−2

10−1

T
ra

in
in

g
L

os
s

RADAGRAD

ADAGRAD

0 20000 40000 60000 80000 100000

Iteration

10−1

100

Te
st

L
os

s

RADAGRAD

ADAGRAD

Figure 3: Comparison of training loss (left) and and test loss
(right) on language modelling task with the T-LSTM.

Recurrent Neural Networks.
We trained the strongly-typed
variant of the long short-term
memory network (T-LSTM, [4])
for language modelling, which
consists of the following task:
Given a sequence of words from
an original text, predict the next
word. We used pre-trained
GLOVE embedding vectors [29]
as input to the T-LSTM layer
and a softmax over the vocabu-
lary (10k words) as output. The
loss is the mean categorical cross-
entropy. The memory size of
the T-LSTM units was set to
256. We trained and evaluated
our network on the Penn Tree-
bank dataset [25]. We subsampled strings of length 20 from the dataset and asked the network to
predict each word in the string, given the words up to that point. Learning rates were selected by
searching over a log scale of possible values and measuring performance on a validation set.

We compared RADAGRAD with ADAGRAD without variance reduction. The results of this experi-
ment can be seen in Figure 3. During training, we found that RADAGRAD consistently outperforms
ADAGRAD: RADAGRAD is able to both quicker reduce the training loss and also reaches a smaller
value (5.62 × 10−4 vs. 1.52 × 10−3, a 2.7× reduction in loss). Again, we found that the selected
learning rate is an order of magnitude higher for RADAGRAD than for ADAGRAD. RADAGRAD is
able to exploit the fact that T-LSTMs perform type-preserving update steps which should preserve
any low-rank structure present in the weight matrices. The relative improvement of RADAGRAD
over ADAGRAD in training is also reflected in the test loss (1.15 × 10−2 vs. 3.23 × 10−2, a 2.8×
reduction).

5 Discussion

We have presented ADA-LR and RADAGRAD which approximate the full proximal term of ADAGRAD
using fast, structured random projections. ADA-LR enjoys similar regret to ADA-FULL and both
methods achieve similar empirical performance at a fraction of the computational cost. Importantly,
RADAGRAD can easily be modified to make use of standard improvements such as variance reduction.
Using variance reduction in combination in particular has stark benefits for non-convex optimization
in convolutional and recurrent neural networks. We observe a marked improvement over widely-used
techniques such as ADAGRAD and SVRG, the combination of which has recently been proven to be
an excellent choice for non-convex optimization [1].

Furthermore, we tried to incorporate exponential forgetting schemes similar to RMSPROP and ADAM
into the RADAGRAD framework but found that these methods degraded performance. A downside of
such methods is that they require additional parameters to control the rate of forgetting.

Optimization for deep networks has understandably been a very active research area. Recent work has
concentrated on either improving estimates of second order information or investigating the effect of
variance reduction on the gradient estimates. It is clear from our experimental results that a thorough
study of the combination provides an important avenue for further investigation, particularly where
parts of the underlying model might have low effective rank.

Acknowledgements. We are grateful to David Balduzzi, Christina Heinze-Deml, Martin Jaggi,
Aurelien Lucchi, Nishant Mehta and Cheng Soon Ong for valuable discussions and suggestions.

8



References
[1] Z. Allen-Zhu and E. Hazan. Variance reduction for faster non-convex optimization. In Proceedings of the

33rd International Conference on Machine Learning, 2016.
[2] S.-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276, 1998.
[3] D. Balduzzi. Deep online convex optimization with gated games. arXiv preprint arXiv:1604.01952, 2016.
[4] D. Balduzzi and M. Ghifary. Strongly-typed recurrent neural networks. In Proceedings of the 33rd

International Conference on Machine Learning, 2016.
[5] R. H. Byrd, S. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-newton method for large-scale

optimization. arXiv preprint arXiv:1401.7020, 2014.
[6] Y. N. Dauphin, H. de Vries, J. Chung, and Y. Bengio. Rmsprop and equilibrated adaptive learning rates for

non-convex optimization. arXiv preprint arXiv:1502.04390, 2015.
[7] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with support for

non-strongly convex composite objectives. In Advances in Neural Information Processing Systems, 2014.
[8] G. Desjardins, K. Simonyan, R. Pascanu, et al. Natural neural networks. In Advances in Neural Information

Processing Systems, pages 2062–2070, 2015.
[9] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic

optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.
[10] J. C. Duchi, M. I. Jordan, and H. B. McMahan. Estimation, optimization, and parallelism when data is

sparse. In Advances in Neural Information Processing Systems, 2013.
[11] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3. JHU Press, 2012.
[12] A. Gonen and S. Shalev-Shwartz. Faster sgd using sketched conditioning. arXiv preprint arXiv:1506.02649,

2015.
[13] Y. Gong, S. Kumar, H. Rowley, and S. Lazebnik. Learning binary codes for high-dimensional data using

bilinear projections. In Proceedings of CVPR, pages 484–491, 2013.
[14] R. Grosse and R. Salakhudinov. Scaling up natural gradient by sparsely factorizing the inverse fisher

matrix. In Proceedings of the 32nd International Conference on Machine Learning, pages 2304–2313,
2015.

[15] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

[16] C. Heinze, B. McWilliams, and N. Meinshausen. Dual-loco: Distributing statistical estimation using
random projections. In Proceedings of AISTATS, 2016.

[17] C. Heinze, B. McWilliams, N. Meinshausen, and G. Krummenacher. Loco: Distributing ridge regression
with random projections. arXiv preprint arXiv:1406.3469, 2014.

[18] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. Variance reduced stochastic gradient
descent with neighbors. In Advances in Neural Information Processing Systems, 2015.

[19] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In
Advances in Neural Information Processing Systems, pages 315–323, 2013.

[20] N. S. Keskar and A. S. Berahas. adaQN: An Adaptive Quasi-Newton Algorithm for Training RNNs. Nov.
2015.

[21] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[22] A. Lucchi, B. McWilliams, and T. Hofmann. A variance reduced stochastic newton method. arXiv preprint

arXiv:1503.08316, 2015.
[23] H. Luo, A. Agarwal, N. Cesa-Bianchi, and J. Langford. Efficient second order online learning via sketching.

arXiv preprint arXiv:1602.02202, 2016.
[24] M. W. Mahoney. Randomized algorithms for matrices and data. Apr. 2011. arXiv:1104.5557v3 [cs.DS].
[25] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated corpus of english: The

penn treebank. Computational linguistics, 19(2):313–330, 1993.
[26] J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approximate curvature. In

Proceedings of the 32nd International Conference on Machine Learning, 2015.
[27] B. McWilliams, G. Krummenacher, M. Lucic, and J. M. Buhmann. Fast and robust least squares estimation

in corrupted linear models. In Advances in Neural Information Processing Systems, volume 27, 2014.
[28] B. Neyshabur, R. R. Salakhutdinov, and N. Srebro. Path-sgd: Path-normalized optimization in deep neural

networks. In Advances in Neural Information Processing Systems, pages 2413–2421, 2015.
[29] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP,

volume 14, pages 1532–1543, 2014.
[30] L. Zhang, M. Mahdavi, R. Jin, T. Yang, and S. Zhu. Recovering optimal solution by dual random projection.

arXiv preprint arXiv:1211.3046, 2012.

9


