
A Model for Real-Time Computation in Generic
Neural Microcircuits

Wolfgang Maass
�
, Thomas Natschläger

Institute for Theoretical Computer Science
Technische Universitaet Graz, Austria�

maass, tnatschl � @igi.tu-graz.ac.at

Henry Markram
Brain Mind Institute

EPFL, Lausanne, Switzerland
henry.markram@epfl.ch

Abstract

A key challenge for neural modeling is to explain how a continuous
stream of multi-modal input from a rapidly changing environment can be
processed by stereotypical recurrent circuits of integrate-and-fire neurons
in real-time. We propose a new computational model that is based on
principles of high dimensional dynamical systems in combination with
statistical learning theory. It can be implemented on generic evolved or
found recurrent circuitry.

1 Introduction

Diverse real-time information processing tasks are carried out by neural microcircuits in
the cerebral cortex whose anatomical and physiological structure is quite similar in many
brain areas and species. However a model that could explain the potentially universal com-
putational capabilities of such recurrent circuits of neurons has been missing. Common
models for the organization of computations, such as for example Turing machines or at-
tractor neural networks, are not suitable since cortical microcircuits carry out computations
on continuous streams of inputs. Often there is no time to wait until a computation has
converged, the results are needed instantly (“anytime computing”) or within a short time
window (“real-time computing”). Furthermore biological data prove that cortical micro-
circuits can support several real-time computational tasks in parallel, a fact that is incon-
sistent with most modeling approaches. In addition the components of biological neural
microcircuits, neurons and synapses, are highly diverse [1] and exhibit complex dynamical
responses on several temporal scales. This makes them completely unsuitable as building
blocks of computational models that require simple uniform components, such as virtually
all models inspired by computer science or artificial neural nets. Finally computations in
common computational models are partitioned into discrete steps, each of which require
convergence to some stable internal state, whereas the dynamics of cortical microcircuits
appears to be continuously changing. In this article we present a new conceptual framework
for the organization of computations in cortical microcircuits that is not only compatible
with all these constraints, but actually requires these biologically realistic features of neu-
ral computation. Furthermore like Turing machines this conceptual approach is supported
by theoretical results that prove the universality of the computational model, but for the
biologically more relevant case of real-time computing on continuous input streams.

�
The work was partially supported by the Austrian Science Fond FWF, project #P15386.

PSfrag replacementsA

����� � � �����
	�

�
 �����

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

d(u,v)=0
d(u,v)=0.1
d(u,v)=0.2
d(u,v)=0.4

st
at

e
di

st
an

ce

time [sec]

PSfrag replacements

B

Figure 1: A Structure of a Liquid State Machine (LSM), here shown with just a single
readout. B Separation property of a generic neural microcircuit. Plotted on the � -axis is the
value of � �
� ������� �
� ����� � , where � � � denotes the Euclidean norm, and �
� ����� , �
� �����
denote the liquid states at time � for Poisson spike trains � and � as inputs, averaged over
many � and � with the same distance � ����� � � . � ����� � � is defined as distance (

��
-norm)

between low-pass filtered versions of � and � .

2 A New Conceptual Framework for Real-Time Neural Computation

Our approach is based on the following observations. If one excites a sufficiently com-
plex recurrent circuit (or other medium) with a continuous input stream ������� , and looks
at a later time ����� at the current internal state ����� of the circuit, then ����� is likely to
hold a substantial amount of information about recent inputs ���!�"� (for the case of neural
circuit models this was first demonstrated by [2]). We as human observers may not be able
to understand the “code” by which this information about ������� is encoded in the current
circuit state ����� , but that is obviously not essential. Essential is whether a readout neu-
ron that has to extract such information at time � for a specific task can accomplish this.
But this amounts to a classical pattern recognition problem, since the temporal dynamics
of the input stream ������� has been transformed by the recurrent circuit into a high dimen-
sional spatial pattern ����� . A related approach for artificial neural nets was independently
explored in [3].

In order to analyze the potential capabilities of this approach, we introduce the abstract
model of a Liquid State Machine (LSM), see Fig. 1A. As the name indicates, this model
has some weak resemblance to a finite state machine. But whereas the finite state set
and the transition function of a finite state machine have to be custom designed for each
particular computational task, a liquid state machine might be viewed as a universal finite
state machine whose “liquid” high dimensional analog state ����� changes continuously over
time. Furthermore if this analog state ����� is sufficiently high dimensional and its dynamics
is sufficiently complex, then it has embedded in it the states and transition functions of
many concrete finite state machines. Formally, an LSM # consists of a filter

(i.e. a

function that maps input streams ���$�%� onto streams ��� � , where ����� may depend not just on������� , but in a quite arbitrary nonlinear fashion also on previous inputs ������� ; in mathematical
terminology this is written �����'&(�
 �)�*�����), and a (potentially memoryless) readout
function

	

that maps at any time � the filter output ����� (i.e., the “liquid state”) into some

target output � ����� . Hence the LSM itself computes a filter that maps ���$�%� onto � ��� � .
In our application to neural microcircuits, the recurrently connected microcircuit could be
viewed in a first approximation as an implementation of a general purpose filter

(for

example some unbiased analog memory), from which different readout neurons extract and
recombine diverse components of the information contained in the input ���$�%� . The liquid
state ����� is that part of the internal circuit state at time � that is accessible to readout neu-
rons. An example where ���$�%� consists of 4 spike trains is shown in Fig. 2. The generic
microcircuit model (270 neurons) was drawn from the distribution discussed in section 3.

input

0.2
0.4

0

0.6

0

0.8

0.2
0.4

0

3

0

0.15

0 0.2 0.4 0.6 0.8 1

0.1
0.3

time [sec]

PSfrag replacements

���������
: sum of rates of inputs 1&2 in the interval [� -30 ms, �]

�
	������
: sum of rates of inputs 3&4 in the interval [� -30 ms, �]

��������
: sum of rates of inputs 1-4 in the interval [� -60 ms, � -30 ms]

���������
: sum of rates of inputs 1-4 in the interval [� -150 ms, �]

�
�������
: spike coincidences of inputs 1&3 in the interval [� -20 ms, �]

���������
: nonlinear combination ���� ����� ���� ����� � �
� ���

�
!������
: nonlinear combination �#"� �����

� � � � ����$&% � �� � ���('*)� �+� � � ����$&,�- .�� �

Figure 2: Multi-tasking in real-time. Input spike trains were randomly generated in such
a way that at any time � the input contained no information about preceding input more
than 30 ms ago. Firing rates / ����� were randomly drawn from the uniform distribution over
[0 Hz, 80 Hz] every 30 ms, and input spike trains 1 and 2 were generated for the present
30 ms time segment as independent Poisson spike trains with this firing rate / ����� . This
process was repeated (with independent drawings of / ����� and Poission spike trains) for
each 30 ms time segment. Spike trains 3 and 4 were generated in the same way, but with
independent drawings of another firing rate 0/ ����� every 30 ms. The results shown in this
figure are for test data, that were never before shown to the circuit. Below the 4 input
spike trains the target (dashed curves) and actual outputs (solid curves) of 7 linear readout
neurons are shown in real-time (on the same time axis). Targets were to output every
30 ms the actual firing rate (rates are normalized to a maximum rate of 80 Hz) of spike
trains 1&2 during the preceding 30 ms (

	21
), the firing rate of spike trains 3&4 (

	 �
), the

sum of
	31

and
	 �

in an earlier time interval [� -60 ms, � -30 ms] (
	
.) and during the interval

[� -150 ms, �] (
	
%), spike coincidences between inputs 1&3 (

	54 ����� is defined as the number
of spikes which are accompanied by a spike in the other spike train within 5 ms during the
interval [� -20 ms, �]), a simple nonlinear combinations

	76
and a randomly chosen complex

nonlinear combination
	98

of earlier described values. Since that all readouts were linear
units, these nonlinear combinations are computed implicitly within the generic microcircuit
model. Average correlation coefficients between targets and outputs for 200 test inputs of
length 1 s for

	�1
to
	 8

were 0.91, 0.92, 0.79, 0.75, 0.68, 0.87, and 0.65.

In this case the 7 readout neurons
	 1

to
	:8

(modeled for simplicity just as linear units with
a membrane time constant of 30 ms, applied to the spike trains from the neurons in the

circuit) were trained to extract completely different types of information from the input
stream ���$�%� , which require different integration times stretching from 30 to 150 ms. Since
the readout neurons had a biologically realistic short time constant of just 30 ms, additional
temporally integrated information had to be contained at any instance � in the current fir-
ing state ����� of the recurrent circuit (its “liquid state”). In addition a large number of
nonlinear combinations of this temporally integrated information are also “automatically”
precomputed in the circuit, so that they can be pulled out by linear readouts. Whereas the
information extracted by some of the readouts can be described in terms of commonly dis-
cussed schemes for “neural codes”, this example demonstrates that it is hopeless to capture
the dynamics or the information content of the primary engine of the neural computation,
the liquid state of the neural circuit, in terms of simple coding schemes.

3 The Generic Neural Microcircuit Model

We used a randomly connected circuit consisting of leaky integrate-and-fire (I&F) neu-
rons, 20% of which were randomly chosen to be inhibitory, as generic neural microcircuit
model.1 Parameters were chosen to fit data from microcircuits in rat somatosensory cortex
(based on [1], [4] and unpublished data from the Markram Lab). 2 It turned out to be es-
sential to keep the connectivity sparse, like in biological neural systems, in order to avoid
chaotic effects.

In the case of a synaptic connection from � to
�

we modeled the synaptic dynamics accord-
ing to the model proposed in [4], with the synaptic parameters � (use), � (time constant
for depression), � (time constant for facilitation) randomly chosen from Gaussian distri-
butions that were based on empirically found data for such connections. 3 We have shown
in [5] that without such synaptic dynamics the computational power of these microcircuit
models decays significantly. For each simulation, the initial conditions of each I&F neuron,
i.e. the membrane voltage at time � &�� , were drawn randomly (uniform distribution) from
the interval [13.5 mV, 15.0 mV]. The “liquid state” ����� of the recurrent circuit consisting
of � neurons was modeled by an � -dimensional vector computed by applying a low pass
filter with a time constant of 30 ms to the spike trains generated by the � neurons in the
recurrent microcicuit.

1The software used to simulate the model is available via www.lsm.tugraz.at .
2Neuron parameters: membrane time constant 30 ms, absolute refractory period 3 ms (excita-

tory neurons), 2 ms (inhibitory neurons), threshold 15 mV (for a resting membrane potential assumed
to be 0), reset voltage 13.5 mV, constant nonspecific background current � 	�
����� � nA, input re-
sistance 1 M � . Connectivity structure: The probability of a synaptic connection from neuron �
to neuron � (as well as that of a synaptic connection from neuron � to neuron �) was defined as��������� �"!$#&%'� �)(*�,+*-'. % + , where . is a parameter which controls both the average number of connec-
tions and the average distance between neurons that are synaptically connected (we set .&
0/ , see [5]
for details). We assumed that the neurons were located on the integer points of a 3 dimensional grid
in space, where

#1� �)(*�,+ is the Euclidean distance between neurons � and � . Depending on whether
� and � were excitatory (2) or inhibitory (�), the value of

�
was 0.3 (232), 0.2 (23�), 0.4 (��2), 0.1

(�4�).
3Depending on whether � and � were excitatory (2) or inhibitory (�), the mean values of these

three parameters (with
#

, 5 expressed in seconds, s) were chosen to be .5, 1.1, .05 (232), .05, .125,
1.2 (26�), .25, .7, .02 (��2), .32, .144, .06 (�4�). The SD of each parameter was chosen to be 50%
of its mean. The mean of the scaling parameter 7 (in nA) was chosen to be 30 (EE), 60 (EI), -19
(IE), -19 (II). In the case of input synapses the parameter 7 had a value of 18 nA if projecting onto
a excitatory neuron and 9 nA if projecting onto an inhibitory neuron. The SD of the 7 parameter
was chosen to be 100% of its mean and was drawn from a gamma distribution. The postsynaptic
current was modeled as an exponential decay

����� �"!98 -;:"<�+ with :�<=
0� ms (:,<9
?> ms) for excitatory
(inhibitory) synapses. The transmission delays between liquid neurons were chosen uniformly to be
1.5 ms (232), and 0.8 ms for the other connections.

4 Towards a non-Turing Theory for Real-Time Neural Computation

Whereas the famous results of Turing have shown that one can construct Turing machines
that are universal for digital sequential offline computing, we propose here an alternative
computational theory that is more adequate for analyzing parallel real-time computing on
analog input streams. Furthermore we present a theoretical result which implies that within
this framework the computational units of the system can be quite arbitrary, provided that
sufficiently diverse units are available (see the separation property and approximation prop-
erty discussed below). It also is not necessary to construct circuits to achieve substantial
computational power. Instead sufficiently large and complex “found” circuits (such as the
generic circuit used as the main building block for Fig. 2) tend to have already large compu-
tational power, provided that the reservoir from which their units are chosen is sufficiently
rich and diverse.

Consider a class � of basis filters � (that may for example consist of the components
that are available for building filters

of neural LSMs, such as dynamic synapses). We

say that this class � has the point-wise separation property if for any two input functions���$�%� � � �$�%� with ���������& � �!��� for some ��� � there exists some ����� with � � ��� �����	�&� ��� �*����� .4 There exist completely different classes � of filters that satisfy this point-wise
separation property: � =

�
all delay lines � , � =

�
all linear filters � , and biologically more

relevant � =
�
models for dynamic synapses � (see [6]).

The complementary requirement that is demanded from the class
 of functions from
which the readout maps

	

are to be picked is the well-known universal approximation

property: for any continuous function � and any closed and bounded domain one can ap-
proximate � on this domain with any desired degree of precision by some

	 ��
 . An
example for such a class is
 & �

feedforward sigmoidal neural nets � . A rigorous mathe-
matical theorem [5], states that for any class � of filters that satisfies the point-wise sepa-
ration property and for any class
 of functions that satisfies the universal approximation
property one can approximate any given real-time computation on time-varying inputs with
fading memory (and hence any biologically relevant real-time computation) by a LSM #
whose filter

is composed of finitely many filters in � , and whose readout map

	

is

chosen from the class
 . This theoretial result supports the following pragmatic procedure:
In order to implement a given real-time computation with fading memory it suffices to take
a filter

whose dynamics is “sufficiently complex”, and train a “sufficiently flexible” read-

out to assign for each time � and state ����� & � �)�*����� the target output � ����� . Actually, we
found that if the neural microcircuit model is not too small, it usually suffices to use linear
readouts. Thus the microcircuit automatically assumes “on the side” the computational role
of a kernel for support vector machines.

For physical implementations of LSMs it makes more sense to study instead of the theoret-
ically relevant point-wise separation property the following qualitative separation property
as a test for the computational capability of a filter

: how different are the liquid states

 � ����� & � �)�*����� and � ����� & � � �*����� for two different input histories ���$�%� � � ��� � . This is
evaluated in Fig. 1B for the case where ����� � � � �$�%� are Poisson spike trains and

is a generic

neural microcircuit model. It turns out, that the difference between the liquid states scales
roughly proportionally to the difference between the two input histories. This appears to
be desirable from the practical point of view, since it implies that saliently different input
histories can be distinguished more easily and in a more noise robust fashion by the read-
out. We propose to use such evaluation of the separation capability of neural microcircuits
as a new standard test for their computational capabilities.

4Note that it is not required that there exists a single ���� which achieves this separation for
any two different input histories � �"� + , � �"� + .

5 A Generic Neural Microcircuit on the Computational Test Stand

The theoretical results sketched in the preceding section can be interpreted as saying that
there are no strong a priori limitations for the power of neural microcircuits for real-time
computing with fading memory, provided they are sufficiently large and their components
are sufficiently heterogeneous. In order to evaluate this somewhat surprising theoretical
prediction, we use a well-studied computational benchmark task for which data have been
made publicly available5: the speech recognition task considered in [7] and [8].

The dataset consists of 500 input files: the words “zero”, “one”, ..., “nine” are spoken by 5
different (female) speakers, 10 times by each speaker. The task was to construct a network
of I&F neurons that could recognize each of the 10 spoken words � . Each of the 500 input
files had been encoded in the form of 40 spike trains, with at most one spike per spike train 6

signaling onset, peak, or offset of activity in a particular frequency band. A network was
presented in [8] that could solve this task with an error 7 of 0.15 for recognizing the pattern
“one”. No better result had been achieved by any competing networks constructed during a
widely publicized internet competition [7]. The network constructed in [8] transformed the
40 input spike trains into linearly decaying input currents from 800 pools, each consisting
of a “large set of closely similar unsynchronized neurons” [8]. Each of the 800 currents
was delivered to a separate pair of neurons consisting of an excitatory “ � -neuron” and an
inhibitory “

�
-neuron”. To accomplish the particular recognition task some of the synapses

between � -neurons (
�

-neurons) are set to have equal weights, the others are set to zero. A
particular achievement of this network (resulting from the smoothly and linearly decaying
firing activity of the 800 pools of neurons) is that it is robust with regard to linear time-
warping of the input spike pattern.

We tested our generic neural microcircuit model on the same task (in fact on exactly the
same 500 input files). A randomly chosen subset of 300 input files was used for training,
the other 200 for testing. The generic neural microcircuit model was drawn from the dis-
tribution described in section 3, hence from the same distribution as the circuit drawn for
the completely different task discussed in Fig. 2, with randomly connected I&F neurons
located on the integer points of a �����	�
��� column. The synaptic weights of 10 linear
readout neurons

	�
which received inputs from the 135 I&F neurons in the circuit were

optimized (like for SVMs with linear kernels) to fire whenever the input encoded the spo-
ken word � . Hence the whole circuit consisted of 145 I&F neurons, less than ����� � ��� of
the size of the network constructed in [8] for the same task 8. Nevertheless the average error
achieved after training by these randomly generated generic microcircuit models was 0.14
(measured in the same way, for the same word ”one”), hence slightly better than that of the
30 times larger network custom designed for this task. The score given is the average for
50 randomly drawn generic microcircuit models.

The comparison of the two different approaches also provides a nice illustration of the

5http://moment.princeton.edu/ mus/Organism/Competition/digits data.html
6The network constructed in [8] required that each spike train contained at most one spike.
7The error (or “recognition score”) � for a particular word � was defined in [8] by �
��������� �

�
������ � � , where �! #" (�%$ ") is the number of false (correct) positives and �& (' and �)$ ' are the numbers of
false and correct negatives. We use the same definition of error to facilitate comparison of results. The
recognition scores of the network constructed in [8] and of competing networks of other researchers
can be found at http://moment.princeton.edu/m̃us/Organism/Docs/winners.html. For the competition
the networks were allowed to be constructed especially for their task, but only one single pattern for
each word could be used for setting the synaptic weights. Since our microcircuit models were not
prepared for this task, they had to be trained with substantially more examples.

8If one assumes that each of the 800 ”large” pools of neurons in that network would consist of
just 5 neurons, it contains together with the * and + -neurons 5600 neurons.

0

45

90

135

0 0.2 0.4

time [s]

0

20

40
"one", speaker 5

PSfrag replacements

in
pu

t
m

ic
ro

ci
rc

ui
t

re
ad

ou
t �����

0 0.2 0.4

time [s]

"one", speaker 3

PSfrag replacements 0 0.2

time [s]

"five", speaker 1

PSfrag replacements 0 0.2

time [s]

"eight", speaker 4

PSfrag replacements

Figure 3: Application of our generic neural microcircuit model to the speech recognition
from [8]. Top row: input spike patterns. Second row: spiking response of the 135 I&F
neurons in the neural microcircuit model. Third row: output of an I&F neuron that was
trained to fire as soon as possible when the word “one” was spoken, and as little as possible
else.

difference between offline computing, real-time computing, and any-time computing.
Whereas the network of [8] implements an algorithm that needs a few hundred ms of pro-
cessing time between the end of the input pattern and the answer to the classification task
(450 ms in the example of Fig. 2 in [8]), the readout neurons from the generic neural mi-
crocircuit were trained to provide their answer (through firing or non-firing) immediately
when the input pattern ended. In fact, as illustrated in Fig. 3, one can even train the read-
out neurons quite successfully to provide provisional answers long before the input pattern
has ended (thereby implementing an ”anytime” algorithm). More precisely, each of the 10
linear readout neurons was trained to recognize the spoken word at any multiple of 20 ms
while the word was spoken. An error score of 1.4 was achieved for this anytime speech
recognition task.

We also compared the noise robustness of the generic microcircuit models with that of
[8], which had been constructed to be robust with regard to linear time warping of the input
pattern. Since no benchmark input data were available to calculate this noise robustness, we
constructed such data by creating as templates 10 patterns consisting each of 40 randomly
drawn Poisson spike trains at 4 Hz over 0.5 s. Noisy variations of these templates were
created by first multiplying their time scale with a randomly drawn factor from

� ��� � � ���)
(thereby allowing for a 9 fold time warp), and subsequently dislocating each spike by an
amount drawn independently from a Gaussian distribution with mean 0 and SD 32 ms.
These spike patterns were given as inputs to the same generic neural microcircuit models
consisting of 135 I&F neurons as discussed before. 10 linear readout neurons were trained
(with 1000 randomly drawn training examples) to recognize which of the 10 templates had
been used to generate a particular input. On 500 novel test examples (drawn from same
distribution) they achieved an error of 0.09 (average performance of 30 randomly generated
microcircuit models). As a consequence of achieving this noise robustness generically,
rather then by a construction tailored to a specific type of noise, we found that the same
generic microcircuit models are also robust with regard to nonlinear time warp of the input.
For the case of nonlinear (sinusoidal) time warp 9 an average (50 microcircuits) error of 0.2

9A spike at time
8

was transformed into a spike at time
8	�
�
 � 8 +�
� ��� � � 8 � � - � /����)+ ������ � /���� 8 ��� +*+ with �
 / Hz,

�
randomly drawn from [0.5,2],

�
randomly drawn from � ��(/�� �

and chosen such that
 � � +
�� .

is achieved. This demonstrates that it is not necessary to build noise robustness explicitly
into the circuit. A randomly generated microcircuit model has at least the same noise
robustness as a circuit especially constructed to achieve that.

This test had implicitly demonstrated another point. Whereas the network of [8] was only
able to classify spike patterns consisting of at most one spike per spike train, a generic
neural microcircuit model can classify spike patterns without that restriction. It can for
example also classify the original version of the speech data encoded into onsets, peaks,
and offsets in various frequency bands, before all except the first events of each kind were
artificially removed to fit the requirements of the network from [8].

The performance of the same generic neural microcircuit model on completely different
computational tasks (recall of information from preceding input segments, movement pre-
diction and estimation of the direction of movement of extended moving objects) turned out
to be also quite remarkable, see [5], [9] and [10]. Hence this microcircuit model appears to
have quite universal capabilities for real-time computing on time-varying inputs.

6 Discussion

We have presented a new conceptual framework for analyzing computations in generic
neural microcircuit models that satisfies the biological constraints listed in section 1. Thus
for the first time one can now take computer models of neural microcircuits, that can be as
realistic as one wants to, and use them not just for demonstrating dynamic effects such as
synchronization or oscillations, but to really carry out demanding computations with these
models. Furthermore our new conceptual framework for analyzing computations in neural
circuits not only provides theoretical support for their seemingly universal capabilities for
real-time computing, but also throws new light on key concepts such as neural coding. Fi-
nally, since in contrast to virtually all computational models the generic neural microcircuit
models that we consider have no preferred direction of information processing, they offer
an ideal platform for investigating the interaction of bottom-up and top-down processing
of information in neural systems.

References
[1] A. Gupta, Y. Wang, and H. Markram. Organizing principles for a diversity of GABAergic

interneurons and synapses in the neocortex. Science, 287:273–278, 2000.
[2] D. V. Buonomano and M. M. Merzenich. Temporal information transformed into a spatial code

by a neural network with realistic properties. Science, 267:1028–1030, Feb. 1995 1995.
[3] H. Jaeger. The ”echo state” approach to analysing and training recurrent neural networks.

German National Research Center for Information Technology, Report 148, 2001.
[4] H. Markram, Y. Wang, and M. Tsodyks. Differential signaling via the same axon of neocortical

pyramidal neurons. Proc. Natl. Acad. Sci., 95:5323–5328, 1998.
[5] W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new

framework for neural computation based on perturbations. Neur. Comp., 14:2531–2560, 2002.
[6] W. Maass and E. D. Sontag. Neural systems as nonlinear filters. Neur. Comp., 12:1743–1772,

2000.
[7] J. J. Hopfield and C. D. Brody. What is a moment? “cortical” sensory integration over a brief

interval. Proc. Natl. Acad. Sci. USA, 97(25):13919–13924, 2000.
[8] J. J. Hopfield and C. D. Brody. What is a moment? transient synchrony as a collective mecha-

nism for spatiotemporal integration. Proc. Natl. Acad. Sci. USA, 98(3):1282–1287, 2001.
[9] W. Maass, R. A. Legenstein, and H. Markram. A new approach towards vision suggested by

biologically realistic neural microcircuit models. In H. H. Buelthoff, S. W. Lee, T. A. Poggio,
and C. Wallraven, editors, Proc. of the 2nd International Workshop on Biologically Motivated
Computer Vision 2002, volume 2525 of LNCS, pages 282–293. Springer, 2002.

[10] W. Maass, T. Natschläger, and H. Markram. Computational models for generic cortical micro-
circuits. In J. Feng, editor, Computational Neuroscience: A Comprehensive Approach. CRC-
Press, 2002. to appear.

