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Abstract

Understanding convergence of stochastic gradient descent (SGD) based optimiza-
tion algorithms can help deal with enormous machine learning problems. To ensure
last-iterate convergence of SGD and momentum-based SGD (mSGD), the existing
studies usually constrain the step size ϵn to decay as

∑+∞
n=1 ϵ

2
n < +∞, which

however is rather conservative and may lead to slow convergence in the early stage
of the iteration. In this paper, we relax this requirement by studying an alternate
step size for the mSGD. First, we relax the requirement of the decay on step size to∑+∞

n=1 ϵ
2+η0
n < +∞ (0 ≤ η0 < 1/2). This implies that a larger step size, such as

ϵn = 1√
n

can be utilized for accelerating the mSGD in the early stage. Under this
new step size and some common conditions, we prove that the gradient norm of
mSGD for a class of non-convex loss functions asymptotically decays to zero. In
addition, we show that this step size can indeed help make the iterates of mSGD
converge into a neighborhood of the stationary points quicker in the early stage. Fi-
nally, we establish the convergence of mSGD under a constant step size ϵn ≡ ϵ > 0
by removing a common requirement in the literature on strong convexity of the
loss functions. Some experiments are given to illustrate the developed results.

1 Introduction

The booming development of machine learning over the past decade relies on the employment of
effective optimization algorithms for training parameterized machine learning models (e.g., neural
networks). A large number of such optimization algorithms are based on gradient descent (GD). The
optimization problem in machine learning can be cast as minimizing a loss function g(θ) ∈ R over
the choice of an N -dimensional real-valued parameter vector θ, i.e., by solving the problem

θ∗ = arg min
θ∈RN

g(θ). (1)

This problem can be solved with a typical GD algorithm through an iteration of the form

θn+1 = θn − ϵn∇θng(θn), (2)

where θn is the estimate of θ∗ at step n, ϵn is a positive step size (learning rate) to be designed, and
∇θng(θn) stands for the gradient of g(θn) at step n. Under certain technical conditions, θn in (2)
can asymptotically (as n → ∞) converge to the optimal solution θ∗. However, (2) is not efficient in
machine leaning applications with enormous training data. To accelerate (2), one attempt is stochastic
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gradient descent (SGD) originating from [1]. Instead of calculating ∇θng(θn) over all the training
data, SGD computes gradient estimate ∇θng(θn, ξn) by sampling a subset of data (following the
distribution of sampling noise {ξn} and then updates the iterate as follows

θn+1 = θn − ϵn∇θng(θn, ξn). (3)

In addition to sampling noise, ξn can be used to model any external noises arising from the gradient
computation.

However the price to pay for this data efficiency is that the employment of stochastic gradients (3)
displays a relatively slow convergence rate during the learning process. In order to improve the
convergence rate of SGD, momentum-based stochastic gradient descend (mSGD), which reduces the
update variance by averaging the past gradients ([2]), has been proposed. A typical iteration form of
mSGD is as follows ([3, 4]):

vn = αvn−1 + ϵn∇θng(θn, ξn), θn+1 = θn − vn, (4)

where α ∈ [0, 1) and ϵn > 0 are momentum coefficient and step size (learning rate), respectively. An
alternative formulation of mSGD, named stochastic heavy ball (SHB) [5, 6], has also been proposed
as follows

vn = βnvn−1 + (1− βn)∇θng(θn, ξn), θn+1 = θn − γnvn, (5)

where βn ∈ (0, 1) and γn are momentum coefficient and step size. It has been shown that mSGD
and SHB are essentially equivalent [7]. In recent years, mSGD has been widely employed in
many applications of deep learning such as image classification [8], fault diagnosis [9], statistical
image reconstruction [10], among others. Moreover, a number of variants on momentum have been
emerging, see, e.g., synthesized Nesterov variants [11], robust momentum [12], and PID-control
based methods [13]. The importance of momentum in deep learning has been illustrated in [4]
through experiments.

There has been a long line of literature analyzing the convergence of SGD and mSGD algorithms.
Regarding SGD, authors in [14] studied the last-iterate convergence when the step size is chosen to
decay as 1/n. Authors in [15, 16] established the last-iterate convergence of SGD for strongly convex
loss functions without the bounded gradients assumption. For the normalized mSGD (SHB), Polyak
[2, 17] and Kaniovski [18] established the convergence (subsequence convergence and convergence
of time averages) properties for convex loss functions. Igor Gitman [5] provided convergence results
of mSGD (SHB) for non-convex loss functions under a somewhat restrictive requirement on uniform
boundedness of a noise term E(∥∇θng(θn, ξn)−∇θng(θn)∥) ≤ δ. It has been pointed out [4, 19] that
the designs of momentum coefficients in [2, 5, 17, 18] may not be consistent with the requirements
of some practical applications. The last-iterate convergence of mSGD for non-convex loss functions
has recently been established in [7, 20] with the step size condition

∑+∞
n=1 ϵ

2
n < +∞, which has

been widely utilized in stochastic optimization [1, 15, 16, 21]. However, this condition requires the
step size to decay relatively fast, so it may lead to slow convergence especially in the early stage
of the iteration. With the requirement that the loss function is strongly convex, [22] showed that
the last-iterate of mSGD can converge to a neighbor of the stationary point when the step size is a
constant.

2 Problem of interest and contributions

In this paper, we consider the problem of last-iterate convergence of mSGD under relaxed require-
ments on step size. Specifically, we seek to relax the condition

∑+∞
n=1 ϵ

2
n < +∞ [1, 7, 15, 16, 21]

that has been required in the literature for proving last-iterate convergence of mSGD. We consider
two possible step sizes: step size that decay as ϵn = 1√

n
and constant step size ϵn ≡ ϵ > 0. Using

such larger step size is expected to lead to the last iterate of mSGD (i.e., θn) converging faster. We
note that since the SGD (3) is a special case of mSGD (4), the developed results in this paper for
mSGD also work for SGD.

The contributions of this paper are summarized as follows:

1) Under the setting of step size decaying as ϵn = 1√
n

, we prove that the gradient norm of mSGD for
a class of non-convex loss functions asymptotically decays to zero. This result is more general than
mean-square gradient convergence established in [20]. In fact, this result holds for any step sizes of
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the form
∑+∞

n=1 ϵ
2+η0
n < +∞ (0 ≤ η0 < 1/2), which is a superset of the widely required condition∑+∞

n=1 ϵ
2
n < +∞ [1, 7, 15, 16, 21]. Given this relaxed step size condition, one can run mSGD by

employing a larger step size like ϵn = 1√
n

for last-iterate convergence.

2) Under some mild conditions, we provide an estimate of the convergence rate of mSGD. Further-
more, under a probability-based metric, we show that the new step size can help to improve the
convergence speed in the early stage of the iteration.

3) Under the setting of constant step size, first we prove that given any small neighborhood of
stationary points, it is feasible to design a step size, such that there is a convergent iterate subsequence
of mSGD staying within the neighborhood almost surely. In addition, we prove that the mean-square
gradient can be arbitrary small by tunning the step size. Comparing with [22], we remove the
requirement of strong convexity on the loss functions.

Regarding the definitions on sequence convergence, the following ones from literature are typical.
For a stochastic variable sequence {ξn} ∈ RN with 0 as the unique limit point, the sequence is
said to satisfy last-iterate convergence if limn→+∞ ∥ξn∥ = 0, a.s.; and time-average (mean-square
convergence) if limn→+∞

1
n

∑n
k=1 E(∥ξk∥2) = 0. It can be proved that last-iterate convergence

implies time-average convergence under the general setting of the considered problem.

Paper outline. The rest of the paper is organized as follows. In Section 3, we provide the main results
of the paper on last-iterate convergence of mSGD under decaying step size and constant step size,
respectively. In Section 4, two simulation experiments are given. Conclusion is made in Section 5.
The main proofs are given in Appendix.

3 Main results

In this section, we provide the main results of this paper on the last-iterate convergence for mSGD (4)
under two possible step sizes: step size that decays as ϵn = 1√

n
and constant step size ϵn ≡ ϵ > 0.

3.1 Convergence of mSGD under decaying step size

The following assumptions are needed in this paper.
Assumption 3.1. Loss function g(θ) in (1) satisfies the following conditions:

1. Noise sequence {ξn} are mutually independent and independent of θ1 and v0, such that
g(θ) = Eξn

(
g(θ, ξn)

)
for any θ ∈ RN .

2. g(θ) is a non-negative and continuously differentiable function. The set of its stationary
points J = {θ|∥∇θg(θ)∥ = 0} is a bounded set which has only finite connected components
J1, ..., Jn. In addition, there is ϵ̃1 > 0, such that for any i and 0 < d(θ, Ji) < ϵ̃1, it holds
that

∣∣g(θ)− gi
∣∣ ̸= 0, where gi = {g(θ)|θ ∈ Ji} is a constant.

3. There are two constants M ′ > 0 and a′ > 0 such that for any θ ∈ RN and n ∈ N+,

Eξn

(∥∥∇θg(θ, ξn)
∥∥2) ≤ M ′∥∥∇θg(θ)

∥∥2 + a′. (6)

4. The gradient ∇θg(θ) satisfies the Lipschitz condition, i.e., there is a constant c > 0, such
that for any x, y ∈ RN , ∥∥∇xg(x)−∇yg(y)

∥∥ ≤ c∥x− y∥.

Conditions 1 and 4 in Assumption 3.1 are common in the literature [1, 15, 16, 21]. [7] required
a condition on strong growth, i.e., Eξn ∥∇ξng(θ, ξn)∥2 ≤ M0∥∇θg(θ)∥2, which however makes it
close to the deterministic case. In contrast, condition 3 allows more randomness of data sampling.
Condition 2 is a mild condition for the reasons as follows. In some works, the non-negative condition
may be replaced by a lower bound condition g(θ) > l̂0 > −∞. These two conditions are essentially
equivalent, since one can construct a new loss function g = g − l̂0 under the lower bound condition,
such that the new loss function is non-negative. The rest of condition 2 is quite general, since it
allows the loss function to have multiple stationary points and to be non-convex.
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Assumption 3.2. In the mSGD (4), momentum coefficient α ∈ [0, 1) and the sequence of step size ϵn is
positive and monotonically decreasing to zero, such that

∑+∞
n=1 ϵn = +∞ and

∑+∞
n=1 ϵ

2+η0
n < +∞,

where 0 ≤ η0 < 1/2 is a constant.

In Assumption 3.2, the momentum coefficient α ∈ [0, 1) is a constant. Comparing with the setting in
[5, 6, 17, 18], where α(n) tends to 1 or 0, constant momentum coefficient is more common in practice
[4, 7, 19]. Regarding the step size condition, it is more general than the one in many existing works
on last-iterate convergence of SGD and mSGD [1, 7, 15, 13, 16, 21], i.e.,

∑+∞
n=1 ϵ

2
n < +∞, which

is obtained from Assumption 3.2 if η0 = 0. Under the step size condition in Assumption 3.2, one
can choose larger step size like ϵn = 1√

n
, which however is not feasible in the commonly required

condition
∑+∞

n=1 ϵ
2
n < +∞. Since the new step size can decay more slowly than the existing one,

it provides more space for step size fine tuning, such that the algorithm can quickly converge to a
neighborhood of the stationary point [23, 24, 22].

Then we attain the first main result in this paper on last-iterate convergence of mSGD under the step
size condition in Assumption 3.2.

Theorem 3.1. Consider the mSGD in (4) with any v0 ∈ RN and θ1 ∈ RN . Under Assump-
tions 3.1 and 3.2, the gradient norm tends to 0 almost surely, i.e.

lim
n→+∞

∥∇θng(θn)∥ = 0 a.s..

Due to page constraint, the complete proof is given Appendix. Here, we provide a proof outline to
present the main proof ideas.

Proof Sketch of Theorem 3.1: We aim to prove that ∇θng(θn) → 0 a.s. via the following key steps.

Step 1: In this step we aim to prove E
(
ϵη0
n g(θn)

)
is uniformly upper bounded. We present this result

as Lemma B.8 in Appendix.

Step 2: We prove there exists a subsequence of ∇θng(θn) which is convergent to 0 a.s.. It is
attained by proving

∑+∞
n=1 ϵ

1+2η0
n ∥∇θng(θn)∥2 < +∞ a.s.. We present this result as Lemma B.10

in Appendix.

Step 3: We aim to extend the subsequence convergence in Step 2 to asymptotic convergence. The
basic idea is to prove that the adjacent terms g(θn) and g(θn+1) are “close" enough, such that

g(θn+1)− g(θn) ≤ k̂ϵ1+2η0

t +Qn,

where k̂ > 0 is a constant and {Qn} is a sequence, such that
∑+∞

n=1 Qn converges a.s.. This result is
presented in Lemma B.11.

Step 4: Finally, we use some techniques to attain the result of asymptotic convergence

∥∇θng(θn)∥
n→∞
→ 0 a.s..

In the last-iterate convergence analysis of mSGD, there are several technical challenges when we
try to extend the condition

∑+∞
n=1 ϵ

2
n < +∞ to

∑+∞
n=1 ϵ

2+δ0
n < +∞ with 0 ≤ η0 < 1/2. One

of the challenges is: When we try to prove
∑+∞

n=1 ζn =
∑+∞

n=1 ϵn∇θng(θn)
T (∇θng(θn, ξn) −

∇θng(θn)) is convergent a.s., which is the vital step to get the last-iterate convergence, we usually
use the Martingale convergence theorem, through which we just need to prove

∑+∞
n=1 E(ζ2n) is

convergent. If the condition
∑+∞

n=1 ϵ
2
n < +∞ holds, we can get

∑+∞
n=1 E(ζ2n) <

∑+∞
n=1 K̂ϵ2n < +∞

(K̂ is a constant) directly. However, under the new condition
∑+∞

n=1 ϵ
2+δ0
n , we can not use this

approach. Instead, we introduce a more technical approach to handle this problem.

Comparing with the corresponding result in [7] (Theorem 1 in [7]), we relax the condition on the
decay of step size. Under this new condition, one can utilize step size with more slow decaying speed
in the iteration of mSGD. Let α = 0 in mSGD, then we can get a similar result for SGD

Corollary 3.1. Consider the SGD in (3) with any θ1 ∈ RN . Under Assumptions 3.1 and 3.2 with
α = 0, the gradient norm tends to 0 almost surely, i.e.

lim
n→+∞

∥∇θng(θn)∥ = 0 a.s..
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In the following, we aim to estimate the last-iterate convergence rate of ∇θng(θn). Instead, the
convergence rate of E

(
∥∇θg(θn)∥2

)
is quite meaningful. In general, if we need to estimate the

convergence rate of the last iterate, we need a probability − retention assumption, i.e., ∀k0 > 0,
∃a > 0, making P (∥θn∥ > a) ∼ P (∥θ1∥ > k0ϵ

2
1, ..., ∥θn∥ > k0ϵ

2
n), and we usually need some

extra assumptions to establish a quantitative relationship between g and ∇g. Existing works were
established usually under the strongly-convex assumption [25, 26, 13], local P-L condition [7], or
convex loss function satisfying some stability conditions, e.g., E ∥∇θng(θn)∥2 < δ < +∞. However,
these assumptions are rather relatively strong, especially the stability condition which is very difficult
to verify. In our paper, we need a milder assumption than the above conditions as follow.
Assumption 3.3. Regarding the loss function g(θ) defined in (1), there exists δ0 > 0, T0 > 0,
such that for any θ ∈ {θ|∥∇θg(θ)∥2/(g(θ) − g∗) < δ0}, it holds that g(θ) < T0, where g∗ =
infθ∈RN g(θ).

This assumption requires the value of the loss function g(θ) to be bounded in the set S =
{θ|∥∇θg(θ)∥2/(g(θ) − g∗) < δ0}. The motivation of this assumption is: For a stochastic algo-
rithm, there is always a probability at which the iterates are far away from the true value. Since
second-derivative information has a more positive effect on convergence (such as strongly convex
loss functions), this condition restricts iterates which are far away due to extreme noise, so that it does
not have a significant effect on global updates. This requirement is milder than the strong convexity
condition, which is commonly used in existing works [25, 26, 13] for the analysis of the last-iterate
convergence. In addition, this assumption allows the loss function to be non-convex, and does not
need the local P-L condition used in [7] on the second derivative information near stationary points.
Note that Assumption 3.3 can be satisfied by many loss functions commonly encountered in machine
learning. First of all, many common loss functions are bounded [27–30], and thus satisfy Assumption
3.3. For unbounded loss functions, there are a number of instances satisfying Assumption 3.3. For
linear regression functions, since they are strongly convex, it is easy to verify the assumption. In the
Appendix, we explain (not in a strict but an illustrating manner) this assumption can also be satisfied
by a two layer neural network with Relu active function under a square loss function.

In the following theorem, we provide an estimate of the convergence rate for the mSGD in (4).
Theorem 3.2. Consider the mSGD in (4) with a unique stationary point θ∗. Then for any v0 ∈ RN

under Assumptions 3.1–3.3 and probability-retention assumption. Then exists a > 0, for any
∥∇θ1g(θ1)∥2, there is

E
(
∥∇θg(θn)∥2

)
= O

((
e
− 2ĉ

(1−α)2

∑n
i=1 ϵi

)( n∑
i=1

ϵ2i e
2ĉ

(1−α)2

∑i
k=1 ϵk

))
, (7)

where ĉ = min{a/2T0, 2δ0}.

Comparing with [7], we remove the strong growth condition, i.e., Eξn ∥∇θg(θ, ξn)∥2 ≤
M∥∇θg(θ)∥2, and relax the step size condition to be

∑+∞
n=1 ϵ

2+δ0
n (0 < δ0 ≤ 1/2). In the

comparison with [20], we do not require the convexity of loss function or E ∥∇θng(θn)∥2 < G.
In addition, we relax the step size condition in [20]. There are quite a few results on the average
iterates in the literature, such as [13, 31, 32]. In [13, 31, 32], the convergence rate O( 1√

n
) of mSGD

is established with the step size 1√
n

. According to our result, let ϵn = 1√
n
, it holds that

E(∥∇θng(θn)∥2) = O
(
e−

√
n

n∑
k=1

e
√
k

k

)
= O

( 1√
n

)
.

It can be proved that the convergence rate of average iterates is also O
(

1√
n

)
.

From (7), we see that larger step size may not lead to larger convergence rate. This is reasonable,
since the convergence rate reflects how fast the iterate θn converges when n → +∞ and a larger step
size usually makes the iterate converges to a neighborhood of stationary point quicker. We have the
following theorem on this point.
Theorem 3.3. Consider the mSGD in (4) with any v0 ∈ RN . Under Assumptions 3.1–3.3, given any
â > 0, if ∥∇θ1g(θ1)∥2 > â, then it holds that

P (τ (â) ≥ n) = O
(
e
− 2ĉ

(1−α)2

∑n
i=1 ϵi

)
,
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where τ (â) = minn>0{∥∇θng(θn)∥2 < â} and ĉ = min{â/2T0, 2δ0}.

Theorem 3.3 provides a probability description of how fast the iterates of mSGD converge into the
preset neighborhood of stationary points. It can be illustrated as follows. It follows from Theorem 3.3
that

P (τ (a) < n) > 1− k̂1e
− 2ĉ

(1−α)2

∑n
i=1 ϵi ,

where k̂1 > 0 is a constant. From the inequality, as n increases, the event ∥∇θng(θn)∥2 < a occurs
with a higher and higher probability tending to probability 1. The influence of momentum coefficient
α and step size ϵn is also quantified. We note that with the measure in Theorem 3.3, the convergence to
a neighborhood of the stationary point is faster than under the traditional condition

∑+∞
n=1 ϵ

2
n < +∞

by setting the step size with a relatively slow decay speed as
∑+∞

n=1 ϵ
2+δ0
n (0 < δ0 ≤ 1/2), such as

ϵn = 1√
n

and η0 = 1/4. Similar results (the large step size can make the iteration quickly converge
to a neighborhood of stationary point, but may converge slowly in the late stage of the algorithm)
appear in [23, 24, 22] through experiments.

3.2 Convergence of mSGD under constant step size

In the previous subsection, we establish the last-iterate convergence of mSGD under a relaxed decay
condition on step size. In this subsection, we study the convergence of mSGD under a constant step
size ϵn ≡ ϵ > 0. We start with the following result on subsequence convergence.

Theorem 3.4. Consider the mSGD in (4) with any v0 ∈ RN and θ1 ∈ RN . Under Assumption 3.1,
for any φ > 0, there exists µ(φ)

0 > 0, such that for any 0 < ϵn ≡ ϵ < µ
(φ)
0 , it holds that∥∥∥∇θ

(φ)
kn

g(θ
(φ)
kn

)
∥∥∥2 ≤ φ, a.s.

where {θ(φ)
kn

} is a subsequence {θn}.

Proof. Due to page constraint, the complete proof is given Appendix. Here, we provide a proof
outline to present the main proof ideas.

To study the mSGD with constant step size, we notice that the impact of the noise cannot be totally
eliminated through the step size. But when ∥∇θng(θn)∥ is relatively large (meaning the distance
between θn and the stationary point θ∗ is relatively large), it holds that Eξn

(
∥∇θng(θn, ξn)∥2

)
≤

M ′∥∇θng(θn)∥2 + a′ ≤ (M ′ + k̂)∥∇θng(θn)∥2. This implies that with a proper step size ϵ, the
noise can be controlled. As a result, the algorithm can be stabilized around a stationary point. In the
following, several key steps in the proof are provided.

Step 1: We define an event by A
(φ)
n =

{
∥∇θ1g(θ1)∥2 > φ, ∥∇θ2g(θ2)∥2 > φ, ..., ∥∇θng(θn)∥2 >

φ
}

and a characteristic function of this event by I
(φ)
n .

Step 2: We prove that the probability of A(φ)
n is tending to 0 as n → ∞. First, we attain a recursion

formula:

E
(
I
(φ)
t+1g(θt+1)

)
− E

(
I
(φ)
t g(θt)

)
≤− αt−1I

(φ)
1 E

(
∇θ1g(θ1)

Tv1
)
−

t∑
i=2

αt−i(ϵ− k̂M ′ϵ2)E
(
I
(φ)
i−1∥∇θig(θi)∥2

)
.

By taking the sum of multiple inequalities as above, we have

t∑
i=2

E
(
I
(φ)
i−1∥∇θig(θi)∥2

)
< +∞.

This leads to
E
(
I
(φ)
t−1∥∇θtg(θt)∥2

)
→ 0.

From the Chebyshev inequality, we attain P (A
(φ)
n ) → 0.
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(a) Three-layer neural network (b) Four-layer neural network

Figure 1: Training loss-iteration chart on the Boston house-price data.

Step 3: Step 2 implies that with probability 1 there exists at least one instant n at which
∥∇θng(θn)∥2 ≤ φ. We note that for the time instant m at which ∥∇θmg(θm)∥2 > φ, we can
use a new start point. By repeating the process of Step 2, we attain the conclusion of this theorem.

Theorem 3.4 shows that under the common conditions in the literature, the constant step size can
guarantee the subsequence convergence of mSGD (4) in any small neighborhood of stationary point.
In addition, we have a similar result on E

(
∥∇θng(θn)∥2

)
as follows.

Proposition 3.1. Suppose {θn} is a sequence generated by (4) with any θ1 ∈ RN and v0 ∈ RN .
Under Assumptions 3.1 and 3.3, if (1) has a unique solution θ∗ and infd(θ,θ∗)>δ0 ∥∇θg(θ)∥2 >

0 (∀δ0 > 0), then for any φ0 > 0, there exist scalars µ
(φ0)
0 > 0 and n0 > 0, such that for any

ϵn ≡ ϵ < µ
(φ0)
0 and n > n0, it holds that

E
(
∥∇θng(θn)∥2

)
≤ φ0.

This result is a substantial extension of the existing results on SGD with constant step size to mSGD.
Comparing with the results in [22], we remove the requirement of µ-strong convexity on loss function.

4 Experiments

Since this paper focuses on convergence analysis on the well-known mSGD, two relatively simple
experiments on regression and classification tasks are given respectively to show the effectiveness of
the results.

4.1 Regression task

In this subsection, we study a house price prediction problem with neural networks trained by mSGD.

Network Architectures. We respectively employ a 3-layer and a 4-layer fully-connected neural
network with ReLu active function and squared loss function.

Implementation. We implement two neural networks to train on this dataset using Keras. The first
neural network consists of three fully connected layers with 13, 8, and 1 neurons. The second neural
network consists of four fully connected layers with 13, 32, 16, 1 neurons, respectively. We initialize
the weights use glorot uniform algorithm. We use mSGD with a mini-batch size of 16, and use mean
square error loss function to train the model. The momentum term coefficient is 0.9 and the model is
trained for up to 1000 epochs. The training takes about two hours at a time in 3080GPU. We do not
use dropout.

7



(a) The training loss (b) Accuracy of ResNet20 on CIFAR-10

Figure 2: Training and prediction performance on CIFAR-10.

Dataset. The training dataset we use is from Boston House Price Dataset2. This dataset is a regression
prediction dataset, which consists of 506 sets of data with dimension 13. During the training process,
we randomly divide 30% as the test set and normalize the data before training.

Results. We use the mSGD in (4) under three different step sizes respectively: ϵn = 1
n , ϵn = 1

n0.7 ,
and ϵn = 1

n0.5 . The experiment results are given in Figure 1. The figure shows that 1) the loss
decays to zero under the three step size settings; 2) ϵn = 1

n0.5 can make the loss tend to a small
neighborhood of zero fastest among the three step size settings. This conforms to the theoretical
analysis in Theorems 3.1–3.3.

4.2 Classification task

In this subsection, we study an image classification problem with neural networks trained by mSGD.

Network Architectures. We employ a 20-layer ResNet network. The convolutional layers mostly
have 3×3 filters and follow two simple design rules: (i) for the same output feature map size, the
layers have the same number of filters; (ii) if the feature map size is halved, the number of filters
is doubled so as to preserve the time complexity per layer. We perform downsampling directly by
convolutional layers that have a stride of 2 and padding with valid. The network ends with an average
pooling layer and a 10-way fully-connected layer with softmax.

Implementation. We implement the ResNet20 network using Keras. We initialize the weights use
glorot uniform algorithm. We use mSGD with a mini-batch size of 64, momentum coefficient 0.9
and use categorical crossentropy loss function to train the model. The models are trained for up to
1000 epochs, taking about two hours at a time in 3080GPU. We do not use dropout.

Dataset. We use two different datasets CIFAR-10 and CIFAR-1003. CIFAR-10 consists of 50k
training images and 10k testing images in 10 classes. CIFAR-10 is a color image dataset close to
ubiquitous objects, and the image size is 32x32x3. CIFAR-100 consists of 50k training images and
10k testing images in 100 classes. Each category contains 500 training images and 100 testing images.
CIFAR-100 is a color image dataset closer to ubiquitous objects, and the image size is 32x32x3.
Normalize the dataset between 0-1 before training.

Results. We use the mSGD in (4) under three different step sizes: ϵn = 1
n , ϵn = 1

n0.7 , and ϵn = 1
n0.5 .

The experiment results are given in Figure 2 and Figure 3. The figures show that 1) the loss decays to
zero and the accuracy goes up to 1 under the three step size settings; 2) ϵn = 1

n0.5 can make the loss
tend to a small neighborhood of zero and make the accuracy tend to a small neighborhood of 1 fastest
among the three step size settings, followed by the setting of ϵn = 1

n0.7 . These results conform to the
theoretical analysis in Theorems 3.1–3.3.

2https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
3https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 3: Training and prediction performance on CIFAR-100.

5 Conclusion

In this paper, we studied the last-iterate convergence of momentum-based stochastic gradient descent
(mSGD) under relaxed conditions on step sizes. First, under the relaxed condition

∑+∞
n=1 ϵ

2+η0
n <

+∞ (0 ≤ η0 < 1/2), we proved the last-iterate convergence of mSGD for a class of non-convex loss
functions. In addition, we showed that this step size can indeed help to improve the convergence
speed in the early stage of the algorithm by quantifying the influence of the step size and momentum
coefficient. This implies that a larger step size, such as ϵn = 1√

n
can be utilized with guaranteed

convergence. We also proved that the algorithm with a constant step size (i.e., ϵn ≡ ϵ > 0) can
ensure the last-iterate convergence of mSGD without requiring the strong convexity assumption on
loss functions.
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