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Abstract

Amid mounting concern about the reliability and credibility of machine learning
research, we present a principled framework for making robust and generalizable
claims: the multiverse analysis. Our framework builds upon the multiverse analysis
[1] introduced in response to psychology’s own reproducibility crisis. To efficiently
explore high-dimensional and often continuous ML search spaces, we model the
multiverse with a Gaussian Process surrogate and apply Bayesian experimental de-
sign. Our framework is designed to facilitate drawing robust scientific conclusions
about model performance, and thus our approach focuses on exploration rather
than conventional optimization. In the first of two case studies, we investigate
disputed claims about the relative merit of adaptive optimizers. Second, we synthe-
size conflicting research on the effect of learning rate on the large batch training
generalization gap. For the machine learning community, a multiverse analysis
is a simple and effective technique for identifying robust claims, for increasing
transparency, and a step toward improved reproducibility.

1 Introduction

Machine learning research faces mounting concern about the reliability of our results and the
credibility of our claims [2–20]. The field of psychology has faced a similar crisis [21], and
confrontation with its shortcomings has sparked practical innovations [1, 22–25]. One such innovation
is of direct relevance to the machine learning community: the multiverse analysis [1].

Throughout any investigation, scientists make decisions about how to perform their work. In
psychology, as in other disciplines, there are a plethora of different ways to conduct and analyze
experiments. From just a handful of choices, we reach such a large decision tree that researchers can
repeatedly try different paths until they chance upon a positive result [26]. Even without conscious
manipulation, these decision points pose a fundamental problem: what if the psychologist had chosen
an alternate—and perfectly reasonable—route through this garden of forking paths [27]? Would their
results and conclusions still stand?

In their replication of a contentious study [28] on the effect of menstrual cycle and relationship status
on women’s political preferences, Steegen et al. [1] identify both decisions taken and reasonable
alternatives.1 They name the Cartesian product of alternatives a multiverse, a set of parallel universes
each containing a slightly different study. Introducing the multiverse analysis, Steegen et al. re-run
the study as if inside each universe, finding that the alleged effect of relationship status and fertility is
highly sensitive to different choices, in particular the definition of “single”. Multiverse analyses have
subsequently been used to evaluate the robustness of claims across a variety of psychological and
neuroscientific settings (e.g. [29–33]).

1E.g. outlier selection; variable discretization; and how to estimate menstrual onset.
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In a machine learning context, we present the multiverse analysis as a principled framework for
analyzing robustness and generality. Consider an example of some modification to a model, say batch
normalization [34]. To verify batch norm’s efficacy, one needs a test bed including model architecture,
optimization method, dataset, evaluation metric, and so on. Regardless of these specific choices, we
would like that batch norm be effective in general. With a multiverse analysis, we can systematically
explore the effect of each choice, and understand the circumstances in which a claim holds true.

Our primary contribution is to introduce the multiverse analysis to ML, which we use to draw more
robust conclusions about model performance. To efficiently explore the high-dimensional and often
continuous ML search space, we model the multiverse with a Gaussian Process (GP) surrogate and use
Bayesian experimental design (§ 2). We present motivating evidence that choosing exploration over
optimization—the essence of a multiverse analysis—is essential when we seek proper understanding
of our claims and their generality (§ 3). In the first of two case studies, we use a multiverse analysis
over hyperparameters to replicate an experiment on adaptive optimizers [35], finding that claims on
the relative merits of optimizers are highly sensitive to learning rate (§ 4). Second, we perform a
more extensive multiverse analysis to synthesize divergent research on the large batch “generalization
gap” [36], finding an interaction effect of batch size and learning rate (§ 5). We conclude by discussing
the limitations of our approach and directions for future work (§ 6).

2 Efficient multiverse exploration

Our approach to the multiverse analysis packages ML researcher decisions into a simple framework,
requiring only a choice of search space X and an evaluation function `, which together define our
multiverse. This search space defines the set of reasonable choices. For example, we might consider
only a few directly relevant hyperparameters (§ 4); include purportedly irrelevant choices such as
dataset (§ 5); or conduct even more expansive analyses (§ 6). The evaluation function should pertain
to the hypothesis being tested. Here, we define it as model test accuracy (§ 5) or difference in test
accuracy (§ 4).

A barrier to analyzing any ML multiverse is the size of the search space and the presence of continuous
dimensions. This makes exhaustive search intractable. To overcome this, we use a GP surrogate—
modeling ` as a function of X—as a stand-in for the multiverse. Using the surrogate, we iteratively
explore the space using Bayesian experimental design [37]:

1. Sample an initial design, X0 ⇠ X , and evaluate ` at each point, Y0 = `(X0);

2. Fit a GP model f to the sampled points X0 and corresponding results Y0;

3. Use an acquisition function a on f to sample and evaluate a new batch (Xi, Yi);

4. Repeat steps 2–3 until an appropriate stopping criterion.

In step 1, our initial design is drawn from a Sobol sequence, a low discrepancy sequence that achieves
improved coverage over uniform random sampling in higher dimensions [38]. The search space and
the evaluation function are specific to the analysis at hand and described later.

In step 2, we model the output of our evaluation function as a noisy function of the inputs,

yi = f(xi) + ✏i , ✏i ⇠ N (0,⌃) . (1)

Placing a GP prior over f with zero mean and positive definite kernel function k,

f ⇠ GP(0, k) , (2)

we obtain the posterior mean µ and variance �2 [39, chap. 2]:

yi+1 ⇠ N (µ(xi+1),�
2(xi+1)) , (3)

µ(xi+1) = kTK�1Yi , (4)

�2(xi+1) = k(xi+1,xi+1)� kT (K + ⌃)�1k , (5)

where K is the kernel matrix and k = [k(xi+1,x0), . . . , k(xi+1,xi)]. We use a Matérn 5/2 kernel
with automatic relevance determination [40].
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(a) UCB (b) IVR (c) IVR

Figure 1: Contour plot of GP-predicted mean test accuracy over search space of C and � (Gamma) as
explored by (a) UCB and (b) IVR acquisition functions. (c) Secondary objectives, e.g. minimizing
group-level outcome differences, may vary along the IVR-revealed plateau.

In step 3, we use integrated variance reduction (IVR) as our acquisition function [41] (motivated
in § 3). IVR calculates the change in total variance if we were to acquire a candidate point xi+1

a(xi+1;Xi, Yi) =

Z

X
�2(p;Xi+1, Yi+1)� �2(p;Xi, Yi) dp , (6)

where Xi, Yi excludes the candidate point and Xi+1, Yi+1 includes it.

Using a Monte Carlo approximation2 for the intractable integral, the most informative point x⇤ to
sample next is

x⇤ = argmin
xi+1

a(xi+1;Xi, Yi) . (7)

A key difference between standard hyperparameter optimization and our framework is that when
optimizing, all models except the best performing are discarded, whereas we use all available
information to draw more robust conclusions. To do this, we continue to use our surrogate model.
First, we visualize the multiverse using the surrogate’s posterior predictive mean, and visualize the
extent to which we have explored through the surrogate’s posterior variance. Second, we test for
interaction effects by comparing a GP with a shared kernel Mshared against an additive kernel Madditive
(see fig. S1). We compare their fit using the Bayes factor K,

K =
P (X,Y |Madditive)

P (X,Y |Mshared)
, (8)

where P (X,Y |M) is the marginal likelihood of the observations given a model. K > 1 indicates
that Madditive better explains the data than Mshared, indicating the absence of an interaction. This also
provides an appropriate termination condition for step 4: we continue to sample until we reach a
conclusive Bayes factor. Finally, we perform a Monte Carlo sensitivity analysis [42, 43] to assess
how much a change in one of the parameters would affect the model outputs.

For GP modeling we use GPy [44] with EmuKit [45] for experimental design and sensitivity analysis.
We use TorchVision’s [46] off-the-shelf deep learning model architectures.

3 Motivating example: SVM hyperparameters

Here we motivate the multiverse analysis and our focus on exploration with an analysis of hyper-
parameter optimization. To both aid replication and assess the effect of hyperparameter tuning
on final results, there are calls for increased transparency around search space and tuning method
(e.g. [47]). Going one step further, we argue that premature optimization—even if transparently
reported—hinders our understanding. We illustrate this with a simple example, tuning two hyperpa-
rameters of an SVM classifier to show that optimizing leads to a distorted view of hyperparameter

2In particularly high-dimensional search spaces, it may be more appropriate to use a quasi-Monte Carlo
method to estimate the variance reduction over a sample of points with improved coverage of the space.
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space. We compare optimization and exploration using the upper confidence bound (UCB) [48] and
IVR acquisition functions.

In this multiverse analysis, we define the search space as the SVM’s regularization coefficient C and
the lengthscale � of its RBF kernel. Our evaluation function is the test accuracy of the SVM on the
Wisconsin Breast Cancer Dataset [49] of samples of suspected cancer to be classified as benign or
malignant. Given the same initial sample, we evaluate 23 further configurations for each acquisition
function.

If we optimize, we would conclude from fig. 1a that there is a single region of strong performance.
Conversely, exploring with IVR (fig. 1b) shows that this region is in fact a plateau, and we are free
to use any value of C as long as we scale � accordingly. While best test accuracy is similar in
both cases, only by exploring do we learn about the full space of our options. This knowledge is
of vital importance if we properly account for additional real-world objectives, such as minimizing
disparity in outcomes across different social groups. We test this idea by assigning a synthetic
majority/minority group label, g ⇠ Bern(0.4), to each datapoint, and show in fig. 1c how group-level
outcomes can vary along the plateau revealed by IVR. Prematurely optimizing could easily result in
selecting a model that introduces group disparity.

There is, of course, an appropriate moment for optimization. As one moves along the spectrum
from research to deployment, so too should one move from exploration to exploitation. Our aim
here is not to critique optimization per se, but to highlight that exploration is also of paramount
importance. When conducting scientific research in particular, we argue it is more appropriate to
learn and understand as much possible, rather than eke out another marginal improvement. Here we
use a multiverse analysis as a framework for systematic exploration.

4 Case study 1: When are adaptive optimizers helpful?

Adam [50] is a popular adaptive optimizer for training deep neural networks. Questioning this practice,
Wilson et al. [35] suggest adaptive optimizers offer limited advantages over vanilla stochastic gradient
descent (SGD) [51]. They present experiments showing that SGD with momentum [52] outperforms
all other optimizers across image recognition on CIFAR-10 [53], language modeling, and constituency
parsing.

Under certain hyperparameter conditions, however, adaptive optimizers can be considered equivalent
to SGD with momentum, highlighting the crucial role of hyperparameter tuning [54]. In replica-
tions of Wilson et al.’s experiment with VGG [55] on CIFAR-10, additionally tuning Adam’s ✏
hyperparameter—introduced solely for numerical stability and typically ignored—eliminates SGD’s
advantage [6, 54].

Both replications [6, 54] can be considered proof by existence. In order to refute Wilson et al.’s
claim, it suffices to find any point in hyperparameter space where Adam beats SGD with momentum.

(a) Mean surface (b) Variance surface
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Figure 2: Contour plot of GP-predicted (a) mean difference in test accuracy (SGD - Adam) and (b)

variance over the search space of learning rate and ✏. Red regions indicate SGD with momentum
outperforms Adam. White points are successful trials; black crosses failed. (c) Final train and test
accuracies. Whiskers extend to min and max. Note SGD train accuracy has median, UQ and max 1.0.
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However, this approach tells us little about relative optimizer performance in general. In this short
case study, we perform a multiverse analysis of Wilson et al.’s experiment with VGG on CIFAR-10.
We explore a reasonable and relevant search space and analyze how different hyperparameter choices
lead to different optimizer recommendations.

4.1 Multiverse definition

Because the claim under scrutiny compares optimizers, we define the evaluation function as the
difference between model test accuracy achieved by Adam and SGD with momentum. Let gt =
rf(✓t�1) be the minibatch-estimated gradient of the loss function f w.r.t. the model parameters
✓t�1. For SGD with momentum, we take a step of size ↵ in the direction of a decaying sum of recent
gradients,

✓t = ✓t�1 � ↵dt , dt = µdt�1 + gt ,

where momentum parameter µ controls decay. In contrast, Adam steps along the gradient normalized
by an unbiased estimate of its first and second moments m̂t and v̂t:

dt =
m̂tp
v̂t + ✏

,

m̂t =
mt

1� �t
1

, mt = �1mt�1 + (1� �1)gt , m0 = 0 ,

v̂t =
vt

1� �t
2

, vt = �2vt�1 + (1� �2)g
2
t , v0 = 0 .

Like Wilson et al., we use the default of µ = 0.9 and use the Polyak implementation. For Adam,
we also use default parameters �1 = 0.9 and �2 = 0.999. The model is VGG-16 with batch
normalization [34] and dropout [56], trained for 300 epochs on CIFAR-10.

We set our search space to learning rate ↵ 2 [10�4, 100] by ✏ 2 [10�11, 10�4]. ✏ is only applied to
Adam. We evaluate 3 batches of 32 points.

4.2 Results
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Figure 3: (a) Main and (b) to-
tal effects of learning rate and
✏. LR drives almost all output
variance. Bars are STD.

The contour plot in fig. 2a shows a large region (10�3  ↵  10
1
2 )

in which SGD outperforms Adam. However, we also identify regions
(approx. ↵ < 10�3 or ↵ > 10

1
2 ) where the opposite is true, though

we note the higher uncertainty (fig. 2b) in the high learning rate region.
See fig. S2 for raw results.

The change in relative performance is described almost entirely by
learning rate. The sensitivity analysis (fig. 3) reveals main effects
(i.e. sensitivity to each variable in isolation) for learning rate and ✏
of 0.990 ± 0.014 and �0.004 ± 0.0002, and similarly total effects
(i.e. sensitivity to each variable including its interaction with others)
of 0.996± 0.014 and 0.008± 0.031. Testing for interaction effects
via Bayes factor (see eq. (8)), we find K = 2635, thus rejecting the
existence of an interaction between learning rate and ✏.

In summary, we find that SGD with momentum often, but not always, outperforms Adam when
training VGG on CIFAR-10, and that the conclusion we draw is highly sensitive to selected learning
rate. Unlike others [6, 54], we do not find a significant effect of ✏, instead finding that learning rate
determines which optimizer performs best. In practice, our results suggest optimizer choice may
make little difference to final test error, as long as an appropriate learning rate is used. If budget for
hyperparameter search is limited, ✏ is unlikely to be the most efficient hyperparameter to include in a
search.3 Using a multiverse analysis, we have systematically explored how decisions about learning
rate and epsilon impact conclusions about the optimal optimizer. In doing so, we have shown that
reported results may vary according to researcher choices.

3That said, our results do not preclude the possibility that with a much more extensive and optimization-based
search, the resulting estimate of the search space might reveal some (modest) room for improvement from tuning
✏. However, as indicated by the sensitivity analysis in fig. 3, any effect is likely to be dwarfed by properly tuning
learning rate, and is unlikely to materially alter the best choice of optimizer.
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(a) AlexNet on CIFAR-10 (b) ResNet on CIFAR-10 (c) VGG on CIFAR-10

(d) AlexNet on CIFAR-100 (e) ResNet on CIFAR-100 (f) VGG on CIFAR-100

Figure 4: Contour plot of GP-predicted mean test accuracy over the search space of learning rate,
batch size, dataset and model. White points are trials with training accuracy � 0.99; black crosses
were excluded. Overlayed translucent regions indicate high training error. For Tiny ImageNet see
fig. S4; for variance see fig. S5. The discrepancy between contours and data points in (a) is due to the
coregionalized model sharing information across functions.

5 Case study 2: Is there a large-batch generalization gap?

Larger batch sizes are a prerequisite for distributed neural network training. However, many re-
searchers have reported a “generalization gap”, where generalization performance declines as batch
size increases [36, 57, 58], a phenomenon potentially [59–62] but not conclusively [63] linked to the
sharpness of the resulting minima.

Subsequent work has sought ways to mitigate the generalization gap by, in broad strokes, either
scaling up the batch size throughout training [64, 65, pp. 262-265], or by scaling learning rate
proportional to batch size [66–69]. To make sense of these results, one must cut through myriad
researcher choices about datasets; model architectures; termination criteria [70]; linear [68] or
sublinear (e.g. square root) [66] scaling rules; high initial learning rate [66]; learning rate decay or
warmup [68]; layer-specific learning rates [69]; batch norm variants [66]; regularization techniques
e.g. label smoothing [70]; and so on. In our second case study, we use a multiverse analysis to
synthesize existing research on the relationship between batch size, learning rate and generalization
error.

5.1 Multiverse definition

Our evaluation function is the test accuracy of a model trained according to the sampled config-
uration. The search space includes learning rate ↵ 2 [10�4, 10�

1
2 ], batch size 2 {24, . . . , 213},

model 2 {AlexNet [71], VGG [55], ResNet [72]}, and dataset 2 {CIFAR-10, CIFAR-100 [53], Tiny
ImageNet[73]}. Specifically, we use VGG-16 with batch norm and ResNet-18. Tiny ImageNet was
selected as a substitute for ImageNet [74] to limit compute expenditure.
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For categorical parameters, we treat each pair of model and dataset as its own function with an
intrinsic coregionalization model [75, 76]. Given base kernel k, our multi-output kernel matrix is:

Bm = wmw
>
m + diag(m) ,

Bd = wdw
>
d + diag(d) ,

K(X,X) = Bm ⌦Bd ⌦ k(X,X) ,

where Bd and Bm represent dataset and model respectively. In interpreting these parameters, the
outer product of w defines how related each output is, whereas  allows them to vary independently.

We evaluate 6 batches of 32 points. Before analysis, we discard all model runs with training
accuracy < 0.99 and re-fit the model. In addition to previous methods we also analyze the coregion-
alization parameters to investigate how much dataset and model impact our results.

5.2 Results

(a) Dataset

(b) Model

Figure 5: Multi-output GP func-
tion correlations. (a) Tiny Im-
ageNet is moderately negatively
correlated with CIFAR-10/100.
(b) All three model outputs are
highly correlated.
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Figure 6: (a) Main and (b) total ef-
fects of all parameters. LR drives
more output variance than batch
size, but dataset is most important.
Increased total effect for LR and
batch size confirms interaction ef-
fect. Bars are STD.

Of 224 trials, 9 failed to converge and a further 115 did not
reach training accuracy � 0.99. A preliminary analysis of the
raw results (see fig. S3) shows test accuracy is barely positively
correlated with learning rate (⇢ = 0.08) and slightly negatively
correlated with batch size (⇢ = �0.2). In fig. 4, however, a
consistent plateau emerges across all models on both CIFAR-10
and CIFAR-100: test accuracy is maintained as long as batch
size scales up with learning rate. On both sides of this plateau,
if either learning rate or batch size are too large, generalization
error will increase.

We were unable to successfully train any model on Tiny Im-
ageNet. Of the 42 models we trained on Tiny ImageNet, 22
reached the 0.99 training accuracy threshold, but none of these
obtained a test accuracy higher than 0.01, indicating significant
overfitting. See fig. S4 for Tiny ImageNet contours.

Testing for interaction effects via Bayes factor (see eq. (8)),
we find K = 0.58, suggesting that an additive kernel is not
sufficient to explain the data and indicating an interaction effect.
This implies that batch size alone does not explain generalization,
but batch size and learning rate together. Our modeling approach
gracefully handles the failures on Tiny ImageNet, such that even
with Tiny ImageNet trials removed, the interaction effect remains
present (K = 0.34).

The coregionalization kernels explain how model and dataset
affect our results. In fig. 5b all model outputs are highly cor-
related, indicating that choice of model does not impact the
relationship between batch size, learning rate, and generalization
error. In contrast fig. 5a shows highly correlated outputs across
CIFAR-10 and CIFAR-100, and moderate negative correlation
with Tiny ImageNet. A strength of our chosen coregionalized
model is that it flexibly captures the batch size and learning rate
relationship in CIFAR-10 and 100, despite the failures on Tiny
ImageNet. Our results on CIFAR-10 and CIFAR-100 indicate
that the relationship may hold across datasets where training

was successful, including across different dataset complexities,
in contrast to previous work [57].

Finally, our sensitivity analysis in fig. 6 reveals next to no main
effect for either learning rate (0.03± 0.06) or batch size (0.02±
0.06). However, the larger total effects for both learning rate
(0.19 ± 0.11) and batch size (0.15 ± 0.11) again support the
existence of an interaction effect. Both learning rate and batch
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size are dominated by the main effect of dataset (0.83 ± 0.03), though this is likely due to Tiny
ImageNet.

In conclusion, our framework reveals a complex interaction between learning rate, batch size, and
generalization error that is consistent across all models and two out of three datasets. These results
support scaling learning rate linearly with batch size [61, 67, 68], but do not support a threshold
batch size (up to 213) after which learning rate is no longer corrective [57, 70]. After accounting
for learning rate, we find no consistent evidence of the proposed [36, 58] large-batch generalization
gap. Here, a multiverse analysis has proven a useful tool to pull together disparate research on the
generalization gap and to surface underlying trends.

6 Discussion

In the three applications of the multiverse analysis presented here, we have demonstrated that
decisions taken by the researcher can have a significant effect on the final conclusions drawn. In
our SVM hyperparameter example, we highlight the important role of systematic exploration and
show that premature optimization may both limit our understanding and present only a partial truth to
downstream practitioners. Our first case study on optimization demonstrated how varying the learning
rate results in fundamentally different conclusions about whether to use SGD with momentum or
Adam for optimization. Conversely, our second case study showed a simple relationship between
batch size, learning rate and generalization error irrespective of model and dataset.

6.1 Choice of search space

Across these examples we have tried to illustrate differently complex analyses by way of differently
sized search spaces. In case study 1 we inflated a rather small multiverse focusing only on directly
relevant hyperparameters, though in case study 2 we built a larger multiverse including parameters
(model and dataset) that vary freely between existing research. An expected critique of multiverse
analyses is that choice of search space is itself a choice.4 However, choosing dimensions and bounds
for a search space is more principled than choosing specific points, and that declaring each dimension
makes assumptions of relevance or irrelevance explicit. That said, it is always possible for subsequent
work to critique the choice of search space and to add new dimensions. Indeed, our first case study
should be expanded to include each of Wilson et al.’s experiments with different model architectures,
datasets, deep learning frameworks and additional adaptive optimizer variants, though we reinforce
that we chose a limited analysis to provide a simple case study. Our second case study also presents a
number of interesting avenues for expansion in subsequent analyses, including additional datasets
and model architectures, learning rate schedules and optimizers. Most interesting would be inclusion
of termination criterion and evaluation metric, both previously highlighted as key drivers of divergent
findings [70].

6.2 Compute cost

Our main contribution is to present the multiverse analysis framework and show how it can be used to
draw robust conclusions about model performance, so we allocated our compute budget to showcase
illustrative examples. Our framework is equally appropriate for research pushing state-of-the-art
with a larger budget, though such experiments aren’t necessary to demonstrate our framework’s
value. In this project, we used 1138 hours of GPU time, at a rough cost of $775 with 140 kg of
CO2.5 We expect costs to scale with multiverse size, requiring a pause for consideration in light of
recent critiques of the environmental impacts of ML [77–79]. In response, we first note that at least
some of the required compute is already taking place as part of existing trial-and-error workflows.
Second, through the introduction of a surrogate model for the multiverse, one can substantially reduce
the amount of exploration required. Finally, we suggest that all resources consumed in producing
non-robust results, and those of subsequent work that builds upon them, are wasted by definition.

4The same applies to GP surrogate setup, e.g. kernel choice, though we suggest our settings used in this work
will be a suitable default for most purposes. See figs. S6 to S10 for a comparison of different kernels.

5Calculated using https://mlco2.github.io/impact [77] assuming A100 GPUs on the University of
Cambridge HPC cluster with carbon efficiency 0.307 kgCO2/kWh.
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6.3 Future work

It is common practice when reporting model performance to train a number of runs with different
random seeds and report the mean and standard deviation. Number of runs varies according to
researcher budget and time. Appropriate sample size to enable robust inference in the face of noise
is rarely considered. Our approach to the multiverse analysis presents an elegant potential solution
to this issue. In our examples thus far we train only a single model for each point and assume
homoscedasticity for simplicity. However, research in experimental design suggests that accounting
for heteroscedasticity by separately modeling the variance in the surrogate [80, 81] could allow for a
principled trade-off between conducting another run and a sampling a new configuration [82].

While we introduce the multiverse analysis to ML, it has previously been applied to a handful
of studies in human computer interaction [83]. In an exciting area for development, the authors
also develop interactive visualizations to help the reader explore the effects each choice, up to and
including re-rendering written conclusions in an online version of the paper. Given that the largest
multiverse in our work is 4-dimensional, our faceted contour plots are sufficient to communicate key
trends. However, in more expansive multiverses novel visualization techniques will become essential.

Recent experiments with pre-registration in ML (e.g. [84]) promise to enforce a distinction between
exploratory and confirmatory research [23, 85]. Committing to an experimentation and analysis
plan in advance can be a helpful foil for questionable practices such as tweaking the parameters
until one reaches a positive result. However, this commitment is limited to a single analysis—one
particular instantiation of a decision set—while the other possible analyses, the remainder of the
multiverse, remain unexplored. We see the multiverse analysis as complementary to pre-registration,
in that pre-registering a multiverse analysis both codifies auxiliary hypotheses and allows room for
exploration.

7 Conclusion

For continued progress in ML, we depend on reproducible results and conclusions that generalize
to new settings. We have introduced the multiverse analysis as a principled framework to explore
the impact of researcher decisions and facilitate the drawing of more robust conclusions. Our
first case study unifies conflicting work on the benefit of adaptive optimizers and reinforces that
optimizer merit is driven primarily by learning rate. In our second case study we identified a complex
interaction between batch size, learning rate and generalization error, and we dispute the existence of
a generalization gap. We have also presented evidence supporting the practice of scaling learning rate
linearly with batch size.

By using a multiverse analysis, both researchers and practitioners gain more robust claims, better un-
derstanding of how decisions impact results, and helpful insight into the generality and reproducibility
of conclusions.
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